Show simple item record

dc.coverage.spatialGeneración de conocimiento
dc.creatorJAVIER ARTURO DIAZ VARGAS
dc.creatorCARLOS JACOB RUBIO BARRIOS
dc.creatorHORACIO TAPIA RECILLAS
dc.date2015-03-27
dc.date.accessioned2018-10-04T15:08:15Z
dc.date.available2018-10-04T15:08:15Z
dc.identifierhttp://dx.doi.org/10.12988/ija.2015.5210
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/754
dc.description.abstractNecessary and sufficient conditions for cubic (quartic) permutation polynomials to be self-invertible over the ring Zpn where p >7 (p >17) is a prime number are given, and completely determined. The characterization of these permutations are given by relations on the coefficients of the polynomial which resulted in a Gröbner basis with respect to some lexicographic order of certain ideals.
dc.language
dc.publisherInternational Journal of Algebra
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1312-8868
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.subjectPermutation polynomials
dc.subjectGröbner basis
dc.titleSelf-Invertible Cubic (Quartic) Permutation Polynomials over Z_p^n with p greater than 7 (p greater than 17) a Prime and Gr öbner Bases
dc.typeinfo:eu-repo/semantics/article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record