Show simple item record

dc.coverage.spatialGeneración de conocimiento
dc.creatorABRAHAM MOISES CANUL PECH
dc.creatorERIC JOSE AVILA VALES
dc.creatorGERARDO EMILIO GARCIA ALMEIDA
dc.date2016-10-05
dc.date.accessioned2018-10-04T15:08:01Z
dc.date.available2018-10-04T15:08:01Z
dc.identifierhttp://www.ccsenet.org/journal/index.php/jmr/article/download/63233/34018
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/541
dc.description.abstractThis paper investigates the global dynamics and bifurcation structure of a viral infection logistic model with delayed nonlinear CTL response and periodic immune response. It is proved that the basic reproduction numbers, R0 and R1, determine the outcome of viral infection. Besides changes in the amplititude of lytic component, we show, via numerical simulations, that , the birth rate of susceptible host cells and the maximum proliferation of target cells are crucial to the outcome of a viral infection. Time delay can alter the period of oscillation for the larger level of periodic forcing. Period doubling bifurcations of the system are observed via simulations. Our results can provide a possible explanation of the oscillation behaviors of virus population,which were observed in chronic HBV or HCV carriers.
dc.languageeng
dc.publisherJournal of Mathematics Research
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1916-9795
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectGlobal stability
dc.subjectNumerical simulation
dc.subjectUniform persistence
dc.subjectVirus dynamics
dc.titleDynamics of a viral infection logistic model with delayed nonlinear CTL response and periodic immune response
dc.typeinfo:eu-repo/semantics/article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record