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A number of high-order variational models for image denoising have been proposed within the last few
years. The main motivation behind these models is to fix problems such as the staircase effect and the loss
of image contrast that the classical Rudin–Osher–Fatemi model [Leonid I. Rudin, Stanley Osher and Emad
Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), pp. 259–268] and
others also based on the gradient of the image do have. In this work, we propose a new variational model
for image denoising based on the Gaussian curvature of the image surface of a given image. We analytically
study the proposed model to show why it preserves image contrast, recovers sharp edges, does not trans-
form piecewise smooth functions into piecewise constant functions and is also able to preserve corners. In
addition, we also provide two fast solvers for its numerical realization. Numerical experiments are shown
to illustrate the good performance of the algorithms and test results. © 2015 Wiley Periodicals, Inc. Numer
Methods Partial Differential Eq 32: 1066–1089, 2016
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I. INTRODUCTION

Image denoising is the technique used to approximate a true image from an observed noisy image.
There exist many different ways to achieve this goal. For instance, spatial linear filtering [1], linear
and nonlinear anisotropic filtering using a partial differential equation (PDE) [2, 3], Wavelet-based
methods [4–6], Markov random–field-based methods [7] and variational methods [8, 9] just to
mention a few have been proposed in the past.

Among variational methods, maybe the most popular and deeply analyzed model is the Total
Variation (TV) image denoising model also known as the Rudin–Osher–Fatemi (ROF) model
[10]. Although, on one hand, this model is extremely good in removing noise and preserving
edges and image contours, conversely, it makes smooth regions of the images to look blocky
creating a visually unpleasant effect and has also the tendency to reduce the image contrast of
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low scale objects [11]. We note that a Bregman-based approach [12] can improve the restoration
in a large extent but not in theory. In this article, we propose a new high-order model based on
the Gaussian curvature (GC) of the image surface. We will show analytically in a future section
that our model does not suffer from the aforementioned problems and still is capable of removing
noise fairly from the image while keeping edges and contours sharp.

Our model finds its foundations in the recent works: [13] where some curvature approximation
is used for image denoising, [14] where mean curvature (MC) is used for surface fairing, the work
in [15] where MC of the image surface is proposed for two dimensional (2D) denoising and [16]
where the analogue of the TV denoising model in the context of geometry processing is intro-
duced. On one hand [13–15], are successful examples of a high-order models sharing many of the
good properties already mentioned for our model. In fact, we will use through out this manuscript
some of the techniques developed in [15] to prove some of our arguments. Conversely, up to our
knowledge, [16] is the very first work to introduce the GC of the surface as a tool to develop a
variational model for geometric processing.

A very frequent occurring type of noise in nature is additive and has Gaussian probability dis-
tribution with zero-mean and given variance σ . Therefore, a noisy image can be mathematically
modeled with the equation

f (x, y) = u(x, y) + η(x, y) (1)

where f = f (x, y) is the known noisy image, u = u(x, y) is the unknown true image and
η = η(x, y) is the unknown additive noise all of them defined on a domain � ⊆ R

2. From
the variational point of view, the task of removing noise can be accomplished by solving a
minimization problem such as

min
u

{∫
�

(f − u)2 dxdy + α R(u)

}
(2)

where α > 0 is a tuning parameter which can be optimized if the underlying noise variance is
estimated [17] and R(u) a given regularizer. Maybe the most popular selection so far for the
regularizer R(u) is the TV of u defined as

∫
�

|∇u| dxdy. This regularizer was proposed for
the denoising ROF model in [10]. The ROF model yields very good results when the image is
piecewise constant by being capable of removing image noise while preserving edges of objects.
However, it also has some well known drawbacks such as the loss of image contrast and the stair-
case effect, the latter very unfortunate when the true image is smooth or piecewise smooth causing
the restored image to have some artifacts and to look blocky. Although some effort has been made
[18–20] to numerically reduce the staircase effect, some researchers just recently started turning
to higher order models looking for better solutions. In this direction are for instance the works
presented in [13, 21, 22] which tested different ways of combining second-order derivatives in the
regularizer, MC-based models [14, 15] which use the L1 norm of the MC as regularizer and the
total generalized variation (TGV) model [23] which is based on obtaining the optimal balancing
between the first and second derivative of the image. Consequently, this model prefers piecewise
smooth images over staircase images in terms of penalization.

In particular, there are two models, [15] and [24], both based on a well-known geometric
entity: MC, which are closest to ours. These two models differ on that [15] use as regularizer the
MC of the surface implicitly generated by the image while [24] use the MC of the level lines of
the image. The popularity of MC has grown within the last years because in addition to remov-
ing noise, is also able to keeping edges and contours of objects sharp and to preserving corners,
smooth regions and image gray-scale intensity contrasts as well. MC based regularizers have been
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proposed for different imaging applications. For instance, in [15] for image denoising, [25] for
image registration, [26, 27] for image inpainting, and [28] for segmentation.

A. Review

We will review in more detail the two models that we have identified as closest to ours: the image
denoising model using the MC of the image surface [15] and the image denoising model using
the curvature of the level-lines of the image [24].

The model introduced by Zhu and Chan in [15] is based on the curvature of the surface S

induced by some image u(x, y) through the mapping (x, y, u(x, y)). The authors in [15] defined
their 2D variational image denoising model as the following minimization problem:

min
u

{∫
�

(f − u)2 dxdy + α

∫
�

|κM | dxdy

}
. (3)

where

κM = ∇ ·
(

∇u√|∇u|2 + 1

)
. (4)

A related but different model was proposed in [22] where curvature is approximated and not
solved directly. The model (3) was studied in [24] using the curvature of the image level lines

κM = ∇ ·
(

∇u√|∇u|2 + ε

)
(5)

where the regularizing parameter ε has been added to avoid division by zero.
It is clear that both models, [24] and [15], are the same when ε → 1. This apparently slight

change has dramatic effects to the model’s solution. On one hand, small ε let us to recover sharp
edges easily but, on other hand, the numerical solution gets much harder to obtain by means of
the classical methods. In [24], a fast nonlinear multigrid method was developed for both models
but its performance showed to be much better for [15] than for [24]. A simple explanation may
be found looking at the ellipticity of κM . When ε = 1 the ellipticity of κM is much larger than that
obtained when ε → 0. The ellipticity of the diffusion PDE one needs to solve either for [15] or
[24] depends strongly on κM , therefore, multigrid methods will perform much better in the former
case.

The above observation prompted the motivation of looking for a new model in between
the former two but at the same time sharing their nice properties: large ellipticity and sharp
reconstructions.

The use of geometric entities to create new variational models maybe an advantage as all tools
from the field of differential geometry are available to us helping to get a better insight of these
models. There are also good solvers for (3), for instance: the augmented Lagrangian method
(ALM) from [29], the nonlinear multigrid method proposed in [24, 25], the homotopy method
from [30] and the iterative method from [31].

Mean curvature has already been used in a different way to denoise an image. Recently,
Bertalmío and Levine [32] showed that when an image is corrupted by additive noise, the curva-
ture of the level sets of the image is less affected by it. Based on this observation, they designed
a method to obtain better results by applying it to the curvature image and then reconstructing
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from it a clean image, rather than denoising the original image directly. Although they used MC,
we believe that GC would be a good candidate as well. In that sense, the model we propose here
could be adapted to Bertalmío and Levine’s model. Also related is the model from [33] where the
authors proposed a compound denoising model fo first- and second-order derivatives.

A related work to image denoising using the curvature of the image surface is the surface fair-
ing model presented by Elsey and Esedoglu [16]. There the authors proposed the analogue of the
TV denoising model in the context of geometry processing by defining a new regularizer based
on the GC of a closed surface and using it to remove noise in 3D objects. Their model preserves
sharp edges and corners such as the MC model does in 2D denoising. Hence, a natural question
arises from here: Is the GC based regularizer suitable for image denoising? The objective of this
article is to provide an answer to this question.

The outline of this article is as follows. In Section II, we introduce the new GC-based regular-
izer. In Section III, we carry out the analysis of the proposed model. In Section IV, two different
iterative methods: the two-step (TS) method and the ALM are proposed for the numerical solution
of the GC model. In Section V, we present experimental results to highlight the virtues of the
model and numerical evidence to show the very good performance of both numerical algorithms.
Finally in Section VI, we present our conclusions.

II. THE NEW GAUSSIAN CURVATURE REGULARIZER FOR IMAGE DENOISING

As we explained in the previous section, and motivated by the good results of the 3D fairing model
of Elsey and Esedoglu, we explore here a GC based model for 2D image denoising.

The GC of a 3D surface S represented implicitly by the zero level set function φ is given by

κG = ∇φH ∗(φ)∇φT

|∇φ|4 (6)

where ∇φ = (φx , φy , φz) is the gradient vector, |∇φ| =
√

φ2
x + φ2

y + φ2
z the gradient norm,

H(φ) =
⎛
⎝φxx φxy φxz

φyx φyy φyz

φzx φzy φzz

⎞
⎠ and

H ∗(φ) =
⎛
⎝φyyφzz − φyzφzy φyzφzx − φyxφzz φyxφzy − φyyφzx

φxzφzy − φxyφzz φxxφzz − φxzφzx φxyφzx − φxxφzy

φxyφyz − φxzφyy φyxφxz − φxxφyz φxxφyy − φxyφyx

⎞
⎠

T

are the Hessian matrix H(φ) and its adjoint H ∗(φ). The derivation of this formula can be found
in [34].

Consider an image function u(x, y) and think of S as the graph of u. Then, we can use the
relation φ = u(x, y) − z to get a formula for κG. With this new set of coordinates, the gradient is
given by ∇φ = (ux , uy , −1)T and the Hessian and its adjoint can be expressed as follows

H(φ) =
⎛
⎝uxx uxy 0

uyx uyy 0
0 0 0

⎞
⎠ ,

H ∗(φ) =
⎛
⎝0 0 0

0 0 0
0 0 uxxuyy − uxyuyx

⎞
⎠ .
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Therefore the GC of the image surface reads

κG = uxxuyy − uxyuyx

(u2
x + u2

y + 1)
2 . (7)

Now, we are ready to formulate our new model using the functional

R(u) =
∫

�

∣∣∣∣uxxuyy − uxyuyx

(u2
x + u2

y + 1)
2

∣∣∣∣dxdy (8)

as a regularizer. Note that the numerator in the definition of κG is equal to the determinant of the
Hessian of u. Therefore, the new image denoising model based on the GC of the image surface
may be written as

min
u

E(u) =
{∫

�

(f − u)2 dxdy + α

∫
�

∣∣∣∣ det(H(u))

(|∇u|2 + 1)
2

∣∣∣∣dxdy

}
. (9)

To find the solution of the GC model, ones has to solve the Euler–Lagrange equation

α∇ ·
(

4|uxxuyy − uxyuyx |
N 3

∇u

)
+ ∇ · B1 + ∇ · B2 + u − f = 0 (10)

with boundary conditions

(−uxy , uxx) · ν = 0, (uyy , −uyx) · ν = 0, −B1 · ν = 0, and − B2 · ν = 0

where definitions for B1 and B2 along with derivation of this PDE can be found in Appendix A.
In the following section, we will analyze some properties of the GC model. However, at this

moment we have no mathematical proof of the existence and uniqueness of its solution remaining
an open problem.

III. ANALYSIS OF THE MODEL

It is important to show that our proposed model (9), provided some conditions are satisfied, is
able to preserve image contrast, edges, and corners such as the MC model does. To achieve this,
we will extend the results from [15] for the MC model to the new GC model and highlight steps
unique to it.

A. Contrast Preservation

To show that the GC regularizer preserves image contrast, we need to prove that it does not depend
on the brightness of image objects here represented by h. To this end, we adopt the analysis method
of [15].

• Consider a sharp image f = hχB(0,R) defined on a rectangle � = (−2R, 2R) × (−2R, 2R),
where χ is the characteristic function, B(0, R) is an open disk in R

2 centered at the origin
with radius R and h > 0.
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FIG. 1. (i) Family of g functions obtained with g(x) = h/(1 + exp(−a(x − c))) where h = 1, c = −0.5
and a varying from 5 to 40. (ii and iii) Revolution surfaces obtained by rotating g over the z axis with
a = 15 and a = 40, respectively. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

• Consider the set S of functions defined as

S = {
g ∈ C2[0, 2R] : g′′(x) ≤ 0 if x ∈ (0, R), g′′(x) ≥ 0 if x ∈ (R, 2R);

there exist R1, R2, 0 < R1 < R < R2 < 2R, such that

g(x) = h if x ∈ [0, R1] and g(x) = 0 if x ∈ [R2, 2R]; g′(R) < −2h/R
}

.

where g ∈ S is a one variable function which generates an image surface by rotating about
the vertical axis. The resulting rotating function defines an image surface (x, y, u(x, y)) in
terms of g through u(x, y) = g(r) with r = √

x2 + y2. From S, we can choose a convenient
sequence of radial symmetric smooth functions g whose revolution surfaces approach the
graph of f .

One way to construct such a sequence of functions g is using the sigmoidal function
g(x) = h/(1 + exp(−a(x − c))) where h, c are constants and letting a → ∞. We illustrate
this in Figure 1. Clearly as a grows, the revolution surface approximates the graph of f .

• The GC regularizer for the chosen sequence will be computed and the limit taken to show
that

∫
κG(f ) does not depend on h.

In the Appendix B, it is shown that the GC can be expressed in terms of g as follows:

κG = uxxuyy − uxyuyx

(1 + u2
x + u2

y)
2 = g′g′′

r(1 + (g′)2)
2 . (11)

Hence,

∫
|κG|dxdy =

∫ 2π

0
dθ

∫ 2R

0
r|κG|dr

= 2π

∫ 2R

0
r

∣∣∣∣ g′g′′

r(1 + (g′)2)
2

∣∣∣∣dr

= 2π

∫ 2R

0

∣∣∣∣ g′g′′

(1 + (g′)2)
2

∣∣∣∣dr .
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= π

∫ 2R

0

∣∣∣∣ −
(

1

1 + (g′)2

)′ ∣∣∣∣dr . (12)

To compute (12) we proceed by splitting the integral over the two intervals [0, R] and [R, 2R].
First, when r ∈ [0, R], g′(0) = 0, g′ ≤ 0, g′′ ≤ 0 therefore κG ≥ 0 and∫

|κG|dxdy = −π

∫ R

0

(
1

1 + (g′)2

)′
dr

= −π

(
1

1 + (g′(R))2 − 1

1 + (g′(0))2

)

= −π

1 + (g′(R))2 + π . (13)

Second, when r ∈ [R, 2R], g′(2R) = 0, g′ ≤ 0, g′′ ≥ 0, therefore, κG ≤ 0 and∫
|κG|dxdy = π

∫ 2R

R

(
1

1 + (g′)2

)′
dr

= π

(
1

1 + (g′(2R))2 − 1

1 + (g′(R))2

)

= −π

1 + (g′(R))2 + π . (14)

Hence for r ∈ [0, 2R], ∫
|κG|dxdy = −2π

1 + (g′(R))2 + 2π . (15)

However, as the revolution surface generated with g approaches the graph of f , g′(R) → ∞
yielding ∫

|κG|dxdy = 2π . (16)

The last equation, means that the regularizer based on the GC of the image surface does not
depend on h, therefore, it is invariant to changes in the gray level intensities. Our model shares
this property with the MC regularizer.

B. Edge Preservation

We now show that the GC model preserves edges. To show edge preservation we need to
demonstrate that E(f ) < E(g) for g ∈ S. Note that E(g) is defined as

E(g) = α

∫
|κG|dxdy +

∫
(f − g)2dxdy. (17)

The result from [15] gives ∫
(f − g)2dxdy ≥ − πh3R

12g′(R)
.
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Hence, we only need to focus on the regularization term. From (15) we already know that∫
|κG|dxdy = −2π

1 + (g′(R))2 + 2π .

Therefore, the following inequality is true

E(g) > α

( −2π

1 + (g′(R))2 + 2π

)
− πh3R

12g′(R)

= α(
−2π

1 + (−g′(R))2 + 2π) + πh3R

12(−g′(R))
. (18)

Now define s = −g′(R) and consider

ζ(s) = α

( −2π

1 + s2
+ 2π

)
+ πh3R

12s

= α2π

(
s2

1 + s2

)
+ πh3R

12s
. (19)

Note that by definition the domain of ζ is the interval [ 2h

R
, +∞). By defining C1 = 2π and

C2 = πh3R

12 , we obtain

ζ(s) = αC1s
2

1 + s2
+ C2

s
(20)

and

lim
s→∞ζ(s) = lim

s→∞
αC1s

2

1 + s2
+ C2

s
= αC1. (21)

Further,

ζ ′(s) = 2αC1s

(1 + s2)
2 − C2

s2

<
2αC1

s3
− C2

s2

= 2C1

s3

(
α − C2

2C1
s

)
. (22)

Thus, selecting α <
C2

2C1

2h

R
we find that ζ ′(s) < 0 for any s ∈ [ 2h

R
, +∞). In other words, provided

α is less than

αmax <
C2

2C1

2h

R
= h4

24
, (23)

ζ(s) is decreasing with limit αC1 implying E(g) > αC1

From (16) and (17)

E(f ) = 2πα = αC1 < E(g) (24)
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for any g ∈ S. From here, using the same arguments to those presented in [15], for any small
ε > 0, we can find a smooth function g ∈ S such that E(g) − ε < E(f ) < E(g), hence,
E(f ) = inf

u∈S
E(u).

As f is a sharp object, this proves that the GC model preserves sharps edges. In addition, this
also shows that for rightly selected α, the image contrast of f is preserved.

C. Corner Preservation

To show corner preservation, we follow a similar procedure to the one used before for con-
trast preservation. This time, however, a sharp image f = hχZ is defined on a rectangle
� = (−R, R) × (−R, R) with Z = (0, R) × (0, R). The image f is, therefore, a square with
brightness h or a rectangular parallelepiped when viewed as a 3-D surface.

To generate the new image surface (x, y, ζ(x, y) we have to redefine both: the one variable
function g and the set S. To this end, let

S = {
g ∈ C2(R) : g(x) = 0 if x < −1, g(x) = 1 if x > 1;

g′′ ≥ 0 in (−1, 0), g′′ ≤ 0 in (0, 1); and 1 ≤ g′(0) ≤ 2
}

(25)

and define ζ(x, y) in terms of g through

ζ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

hg

(
2y

ε

)
(x, y) ∈ [ε, R) × (−R, R)

hg

(
2x

ε

)
(x, y) ∈ (−R, ε) × [ε, R)

hg

(
2 − 2r

ε

)
(x, y) ∈ (−R, ε) × (−R, ε)

(26)

with r =
√

(x − ε)2 + (y − ε)2.
From S, and choosing small enough ε, we can construct a convenient sequence of smooth func-

tions g to approximate the graph of f . The surface z = ζ(x, y) constructed this way is sufficiently
sharp around the edges {x = 0, y ∈ [ε, R)} and {y = 0, x ∈ [ε, R)} and the corner (0, 0).

It is easy to see that g′ ≥ 0 for �1 = [ε, R)× (−R, R), g′′ ≥ 0 for [ε, R)× (−R, 0) and g′′ ≤ 0
for [ε, R) × (0, R). Therefore,∫

�1

|κG| dxdy =
∫ R

ε

[∫ 0

−R

κG dy −
∫ R

0
κG dy

]
dx

= 2(R − ε)

1 + [ 2h

ε
ρ ′(0)]2 (27)

In similar fashion, g′ ≥ 0 for �2 = (−R, ε) × [ε, R), g′′ ≥ 0 for (−R, 0) × [ε, R) and g′′ ≤ 0 for
(0, R) × [ε, R) and ∫

�2

|κG| dxdy = 2(R − ε)

1 + [ 2h

ε
ρ ′(0)]2 (28)

By noticing that in the limit when ε → 0, ρ ′(0) → ∞ we find that
∫ |κG| dxdy = 0 in both �1

and �2. In the last subdomain �3 = (−R, ε) × (−R, ε) approximating the corner, at each point
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(x, y) ∈ �3 at least one of the principal curvatures of the surface lies either on a flat region or an
edge. Therefore, without any calculation we can infer that

∫
�3

|κG| dxdy = 0 again. This is, GC
regularization not only is h-independent but has null value in this example as well.

Hence, E(f ) = inf
u∈Q

E(u) and being f an object with sharp edges and a corner, this confirms

that GC regularization preserves edges and corners. Although the analysis was done for a simple
rectangular object aligned to the grid the previous result give an insight of the behavior of the GC
regularizer when dealing with objects with corners.

IV. NUMERICAL SOLUTION

We now consider the numerical solution of model (9), that is,

min
u

{∫
�

(f − u)2 dxdy + α

∫
�

| det(H(u))

(|∇u|2 + 1)
2 |dxdy

}

which has the Euler–Lagrange equation (10), that is,

α∇ ·
(

4|uxyuyx − uxxuyy |
N 3

∇u

)
+ ∇ · B1 + ∇ · B2 + u − f = 0

with boundary conditions

(−uxy , uxx) · ν = 0, (uyy , −uyx) · ν = 0, −B1 · ν = 0, and − B2 · ν = 0

It can be appreciated that the above equation is a fourth-order nonlinear PDE with diffusion
coefficients yielding anisotropic diffusion. In our initial tests, using the simple gradient descent
method as numerical solver, this equation showed to be very stiff. One way to solve it efficiently
is to develop a multigrid method as in [24]. Here, we consider alternative unilevel methods.

In what follows, we will present two different and fast ways to obtain the numerical solution
of the GC model. First, we will show how to implement a proven method based on smoothing the
noisy vector field generated from the noisy image and recovering the denoised gray level values
by nonlinear interpolation. This TS method has already proven successful in different scenarios
[13, 14, 35–37]. Then, we will move to introduce the ALM for the GC model.

A. A Two-Step Method Based on Vector Field Smoothing and Gray Level Interpolation

Our first selection, is a method where a vector field is constructed from the noisy image, this
vector field is smoothed and gray levels recovered by interpolation. These steps are repeated a
number of times until a satisfactory result is obtained. At each step, a second order nonlinear PDE
has to be solved.

In the case of the GC model, the TS method is a cyclic process where the first step is to rewrite
the regularization part of (9) as a function of the unit vector N = ∇u/|∇u| and minimize with
respect to N . The second step involves recovering u from N by solving

min
u

{∫
�

|∇u| − ∇u · N dxdy + γ

∫
�

(f − u)2 dxdy

}
. (29)

for suitable positive γ = 1/α. The TS cycle is repeated as many times as needed. Practically the
convergence is fast.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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For (9), we need to discuss how the first step can be completely achieved. However, if we
redefine N as N = ∇u then,

det(H(u)) = det(∇N) (30)

where ∇N represents a matrix whose rows are the gradient vectors of the components of N i.e.
the Hessian of u. Due to the new definition of N , the unit vector condition will not be necessarily
satisfied everywhere in the domain. To fix this problem, N is numerically enforced to be a unit
vector using simple brute force at the end of the first step in every cycle.

The second-order PDE that needs to be solved in the first step comes from following
minimization problem:

min
N

R(N , u) ≡
{∫

�

∣∣∣∣ det(∇N)

(|∇u|2 + 1)
2

∣∣∣∣dxdy

}
. (31)

By introducing a small vector variation � = (ε1ψ1, ε2ψ2)
T , to N = (N1, N2)

T , the first-order
optimality conditions for this problem can be expressed as

dR(N + �)

dε1
= 0 and

dR(N + �)

dε2
= 0. (32)

The above equations, involve differentiating the determinant of a matrix, say A, with respect
a parameter ε. This can be done using the following known formula:

d

dε
det A(ε) = det A(ε)trace

(
(A−1(ε))

d

dε
A(ε)

)
. (33)

Applying (33) to (32) and after some manipulation, we obtain the Euler–Lagrange equations
of (31)

sign

(
det(∇N)

(|∇u|2 + 1)
2

)
∇ · ((N2)y , −(N2)x) = 0 (34)

sign

(
det(∇N)

(|∇u|2 + 1)
2

)
∇ · ((−N1)y , (N1)x) = 0. (35)

The whole procedure of the TS method is summarized in Algorithm 1.
Although, at present time we have no formal proof of the convergence of this method for the

GC model, we will present evidence in the numerical experiments section showing that in fact
this method performs very well when solving the GC model. Further, in [38] the authors provided
a complete proof of convergence of the very same technique applied to a very similar problem:
a variant of the Euler’s elastica inpainting model and therefore a MC based model. A similar
convergence analysis for the GC model following the steps of [38] will be part of our future
work. Last but not least, the idea of first smoothing a noisy vector field and recovering smoothed
intensity values from it by interpolation has been successfully tested either for surface fairing
problems in [14, 37] or image denoising and inpainting in [35, 13].

B. Augmented Lagrangian Method for the Gaussian Curvature Based Model

Our second method is the ALM which recently has seen its popularity increased in the image
processing community due to the remarkable results delivered. Some examples of its use for
solving variational models can be found in [29, 39–41] and references therein.
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Algorithm 1 TS method

Require: u0 = f , ε > 0, IN1, IN2, OUT
n = 0; compute N 0 using f

while n < OUT do
for k = 0 to IN1 do

With Nn as initial guess, solve (34) and (35) keeping un lagged

Nk+1
1 = Nk

1 − �t

(
sign

(
det(∇N)

(|∇un|2 + 1)
2

)
∇ · ((N2)y , −(N2)x)

)

Nk+1
2 = Nk

2 − �t

(
sign

(
det(∇N)

(|∇un|2 + 1)
2

)
∇ · ((−N1)y , (N1)x)

)
end for
Update N by doing Nn+1 = N IN1

Normalize N = N/∇N

for k = 0 to IN2 do
With un as initial guess, solve the following equation keeping Nn+1 lagged

uk+1 = uk − �t

(
−∇ · ∇uk

|∇uk| + ε
+ ∇ · N + γ (f − uk)

)
end for
Update un by doing un+1 = uIN2

n = n + 1
end while
where ε is a small positive value to avoid division by zero

We will proceed to show how to implement ALM for the GC based denoising model. To this
end, we introduce some basic notation: the Euclidean space R

M×N of matrices M × N is denoted
as V . A gray-scale image u lives in V and its gradient ∇u lives in Q = V × V . To distinguish
between the inner products and Euclidean norms in each space we use the following notation:
we use (·, ·)V and || · ||V to denote the usual inner product and Euclidean norm of V and sim-
ilarly (·, ·)Q and || · ||Q to denote the same in the space Q. In the latter case, they are defined
as follows: for p = (p1, p2) ∈ Q and q = (q1, q2) ∈ Q, (p, q)Q = (p1, q1)V + (p2, q2)V and
||p||Q = √

(p, p)Q.
To solve the GC denoising model (9) with the ALM we introduce the variables p ∈ Q and

v ∈ V and reformulate the problem as the following constrained optimization problem

min
u∈V ,p∈Q

{
GGC(u, p) = RGC(u, p) + α

2
||u − f ||2V

}
,

s.t. p = ∇u. (36)

The augmented Lagrangian functional for the above constrained optimization problem is as
follows:

LGC(v, q; μ) = RGC(v, q) + α

2
||v − f ||2V + (μ, q − ∇v)Q + r

2
||q − ∇v||2Q, (37)
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where μ ∈ Q is the Lagrange multiplier and r is a positive constant. The saddle-point problem
for the ALM for the GC model is

Find (u, p, λ) ∈ V × Q × Q

s.t. LGC(u, p, μ) ≤ LGC(u, p, λ) ≤ LGC(v, q, λ) ∀(v, q, μ) ∈ V × Q × Q. (38)

To solve the saddle-point problem, the iterative algorithm described in Algorithm 2 is used

Algorithm2 Augmented Lagrangian method for the Gaussian curvature based denoising model

Initialize λ0 = 0
for k = 0 to MAX do

Compute (uk , pk) as an approximate minimizer of the augmented Lagrangian functional
with the Lagrange multiplier λk i.e.,

(uk , pk) ≈ min
(v,q)∈V ×Q

LGC(v, q; λk), (39)

where LGC(v, q; λk) is defined in (37)
update λk+1 = λk + r(pk − ∇uk)

end for

In Algorithm 2, we use an alternate minimization procedure to approximate the solution. This
is, we solve two subproblems, first we solve for u and second for p. This process is repeated until
the following stopping criteria based on the relative error of the solution is satisfied:

||uk − uk−1||L1

||uk−1||L1
< ε (40)

for predefined small ε > 0.

Sub-Problem for u. For a given q and λ

min
v∈V

{α

2
||v − f ||2V − (λk , ∇v)Q + r

2
||q − ∇v||2Q

}
. (41)

This subproblem can be efficiently solved using the optimality condition given by the linear PDE

−r�v + α(v − f ) + ∇ · λk + r∇ · q = 0. (42)

Here, we use Neumann’s boundary conditions and a preconditioned conjugate gradient method
to find the numerical solution. It is also possible to set periodic boundary conditions allowing to
use Fourier transforms [39].

SubProblem for p. For a given v and λ

min
q∈Q

{
R(v, q) + (λk , q)Q + r

2
||q − ∇v||2Q

}
. (43)
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The optimality condition for this subproblem, with � = q2
1 + q2

2 + 1 is

−
((

(q2)y

�2

)
x

+
(−(q2)x

�2

)
y

)
− 4SDq1

�3
+ λ1 + r(q1 − vx) = 0 (44)

−
((−(q1)y

�2

)
x

+
(

(q1)x

�2

)
y

)
− 4SDq2

�3
+ λ2 + r(q2 − vy) = 0 (45)

where

D = det(∇(q)) = (q1)x(q2)y − (q1)y(q2)x ,

S = sign(
D

(||∇u||2 + 1)
2 ),

Equations (44) and (45) can be solved for q1 and q2 with no need of any iterative procedure.
Numerous experiments over the KODAK database show enough evidence to believe that the

ALM method for the GC model converges to a solution visually congruent with the minimization
of the variational model introduced in (9). However, a rigorous mathematical proof of convergence
will be left for future work.

V. EXPERIMENTAL RESULTS

In this section, we give some evidence of the denoising properties and some results using the
GC model on different images. All the results presented in this section for the GC model were
obtained using the TS method with ε = 10−2 selected in Algorithm 1.

A. Edge Preservation

In Figure 2, we illustrate the edge preservation property of the GC model. A synthetic image
containing a circular object of radius R = 50 and contrast h = 1 was created and the maxi-
mum allowed value for the regularization parameter αmax computed using (23). From the first
two columns in Figure 2, it can be observed that provided α ≤ αmax edges remain very sharp.
However for values twice and ten times αmax , see third and fourth columns in the same Figure,
edges start being rounded.

The maximum value αmax in (23) also gives an insight about when edges will be preserved
and noise will be fairly removed. As αmax is independent on the radius of the object, noise will
be removed in same proportion no matter the size of the object. We illustrate this phenomenon in
Figure 3 where two different images have been corrupted with a small quantity of Gaussian noise,
σ = 5. We use a very low level noise to keep the value of h close to one, therefore, the previously
computed αmax remains valid. In Figure 3(ii), we see the result of denoising a circular noisy object
of radius R = 50 using the GC model with the maximum allowed value for the regularization
parameter. It can be appreciated that noise was fairly removed. In Figure 3(iv), we apply the same
denoising procedure using the very same α for the circular object of radius R = 250 in the image.
Again noise has been fairly removed and edges remain sharp.

It is important to notice that edge preservation on the GC model does not depend upon the size
of the object. An opposite behavior can be found in the MC model where αmax = h4

12R
and the

model prefers small-sized objects and large gray scale values.
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FIG. 2. First row, processed images with regularizer parameter set to: (i) 1
2 αmax , (ii) αmax , (iii) 2αmax , (iv)

10αmax . Second row, 1D plot of one line of the image above. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FIG. 3. Two images with circles of radius R = 50 and R = 250, respectively. Each image has been
processed with the maximum allowed value of the regularization parameter for R = 50. In both cases, noise
has been removed and edges preserved.
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FIG. 4. (i) Noisy piecewise smooth image (ii) Restored image using the GC model (iii) 1D plot of the middle
line of the images. Solid blue line is the ground truth; solid red line is the noisy line; black circle markers are
the GC result. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Actually, this property of the MC model is highlighted in [15] with the argument that the MC
model can be used as a data-driven scale selection approach. Although certainly it is possible to
use this property to ones advantage in some situations, we believe that for image denoising this
may not be a nice feature. We argue that in noisy images containing objects with many different
scales, one will have to select a given α to guarantee noise removal but must likely this α will
violate the maximum allowed condition for the large objects smearing their edges.

The GC model, conversely, does not have this problem.

B. Denoising of a Smooth Synthetic Image

In Figure 4, a noisy synthetic piecewise smooth image has been restored with the GC model.
This figure, illustrates the good performance of the GC model denoising this type of images. It
can be seen that smooth regions are very well recovered by the model and noise fairly removed.
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FIG. 5. The average increase in Peak Signal to Noise Ratio (PSNR) computed over the entire Kodak data-
base is shown. The GC model delivers the best average increase for all different levels of noise. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4(ii) shows a visually pleasant result while the 1D plot of any line presented in Figure
4(iii) shows how very well the solution from the GC model fits to the true image.

C. Comparison of GC Against Popular Variational Models on a Large Database

To test our model, we decided to use the Kodak image database [42]. To this end, the resolution
of the images was reduced by half and the luminance channel of each one computed to construct
a set of gray scale images. We tested the TV based model of Rudin, Osher and Fatemi [10] and
the MC based model [15] on the entire Kodak database and compared the results against those
from our model. The results are presented in Figure 5 where the average increase in Peak Signal
to Noise Ratio (PSNR), computed over the entire Kodak database and using different levels of
additive Gaussian noise, is presented. By increase in PSNR we mean PSNR(u) − PSNR(f )

with u defined as the restored image from a given method and f as the noisy. It is evident from
Figure 5 that the denoised images obtained using the GC model are better in terms of the PSNR
than those obtained using the ROF or the MC model.

To obtain the results shown in Figure 5, and to make a fair comparison, we used manually
optimized values of α for each model: for the TV model the values were very close to the known
rule of thumb α = σ ; for the GC model the best values were α = 0.1, 0.2, 1, 10, 20 and for the
MC model were σ = 5, 10, 15, 20, 25.

To illustrate the quality of reconstruction of the GC model and to have a point of comparison
against the results from the MC and TV models we are including three denoising examples in
Figure 6. The noisy images in the first column of Figure 6 were created by adding Gaussian noise
with σ = 15 to the original clean images taken from the KODAK image database. Visually we
can observe how the GC model preserves edges while fairly removing noise. The results from
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FIG. 6. The noisy images in the first column have additive Gaussian noise with σ = 15. The results from
GC model are presented in the second column. They show edge and contrast preservation as well as a fair
removal of noise. The results from the MC model, in the third column, tend to have slightly smoothed edges
while the background looks not as smooth as expected. The results from the TV model have the well-known
problem of blocky regions.

the MC model tend to have slightly smoothed edges and the background is also less clean. The
results from the TV model have the well-known problem of blocky regions.

D. Comparison of GC and TGV Models

Finally, we compared our model against the TGV model [23]. In Figures 7(i and ii), we present
the resulting denoised images from the TGV and GC models, respectively, over a test image
taken from [23]. Figures 7(iii) and (iv) are 3D surface representations of the (i) and (ii) images.
Clearly no staircase can be noticed. This example highlights that the outcome from both models
are comparable when restoring smooth images.

E. CPU-Times

We discuss here the CPU-time of both numerical methods proposed to solve numerically our GC
model: the TS and ALM methods. To get some insight, we selected two popular test images: Lena
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FIG. 7. (i) TGV result (ii) GC result (iii) 3D surface from TGV result (iv) 3D surface from GC result.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. Comparison of average CPU-times between ALM and TS numerical methods.

ALM TS

Size CPU-time # of cycles CPU-time # of cycles

512 × 512 145.80 s 6 791 s 5

256 × 256 17.10 s 6 234.42 s 5

128 × 128 4.87 s 6 51.65 s 5

and Peppers with three different resolutions, added Gaussian noise with σ = 15 and tested both
numerical methods. Overall, in the ALM method six cycles are needed to get convergence while
the TS method needs only five cycles.

In Table I, we show the average CPU-time taken to process the images for resolutions of
128 × 128, 256 × 256, and 512 × 512 pixels. As can be seen both algorithms are very fast in
getting the numerical solution delivered being the ALM the faster of them. However, there is
still room for improvement for the TS algorithm as at each inner step a simple gradient descent
method is being used and 700 iterations run. As part of future work we shall explore both in a
multigrid framework.
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VI. CONCLUSION

We have introduced in this article a new regularizer based on the GC of the image surface. The
use of this new regularizer for image denoising has been studied and analyzed in depth. Synthetic
examples have been presented to highlight the virtues and deficiencies of this Gaussian regular-
izer. In addition, we have presented two state of the art and fast methods for the numerical solution
of the denoising model. Tests show that the GC results may have a better PSNR than those of
the competing methods MC and TGV. Future work will explore the full potential of the new GC
model or regularizer in other imaging models, for example, image registration, deblurring, and
segmentation to mention a few.

APPENDIX A

Euler–Lagrange Equation

Here, we derive the first-order optimality condition or Euler–Lagrange equation for the GC model
already introduced in (10). In particular, we concentrate on the regularization term as the first con-
dition for the fitting term is well known. In the formal derivation we assume that the vector field
u is smooth enough such that gradients are well defined and the variation ϕ has compact support
over � so that we can use the divergence theorem to get rid of the boundary term.

From the definition of R(u) given in (8) and as the denominator is already positive, we compute
the first variation as it is customary using δR ≡ d

dε
R(u + εϕ)|ε=0

δR =
[

d

dε

∫
�

|(u + εϕ)xx(u + εϕ)yy − (u + εϕ)xy(u + εϕ)yx |
((u + εϕ)2

x + (u + εϕ)2
y + 1)

2 dxdy

]
ε=0

=
∫

�

uxxuyy − uxyuyx

|uxxuyy − uxyuyx |
(uxxϕyy + uyyϕxx − uxyϕyx − uyxϕxy)

(u2
x + u2

y + 1)
2 dxdy

−
∫

�

4|uxxuyy − uxyuyx |(uxϕx + uyϕy)

(u2
x + u2

y + 1)
3 dxdy.

At this point, we introduce new notation to simplify the writing of the equations N = u2
x +u2

y +1,
S = sign(uxxuyy − uxyuyx) where sign() is the sign function and ν = (ν1, ν2) the normal vector
unit. We also make use of the divergence theorem when required

δR = −
∫

�

ϕ

(Suxy

N 2

)
xy

−
∫

∂�

ϕy

Suxy

N 2
ν1d� +

∫
∂�

ϕ

(Suxy

N 2

)
x

ν2d�

−
∫

�

ϕ

(Suyx

N 2

)
yx

−
∫

∂�

ϕx

Suyx

N 2
ν2d� +

∫
∂�

ϕ

(Suyx

N 2

)
y

ν1d�

+
∫

�

ϕ

(Suxx

N 2

)
yy

+
∫

�

ϕy

Suxx

N 2
ν2d� −

∫
�

ϕ

(Suxx

N 2

)
y

ν2d�

+
∫

�

ϕ

(Suyy

N 2

)
xx

+
∫

�

ϕx

Suyy

N 2
ν1d� −

∫
�

ϕ

(Suyy

N 2

)
x

ν1d�

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1086 BRITO-LOEZA, CHEN, AND UC-CETINA

+
∫

�

ϕ

(
4|uxxuyy − uxyuyx |ux

N 3

)
x

−
∫

∂�

(
4|u2

xy − uxxuyy |ux

N 3

)
ν1d�

+
∫

�

ϕ

(
4|uxxuyy − uxyuyx |uy

N 3

)
y

−
∫

∂�

(
4|uxxuyy − uxyuyx |uy

N 3

)
ν2d�.

To drop the boundary terms we ask for

(−uxy , uxx) · ν = 0, (uyy , −uyx) · ν = 0,((Suyx

N 2

)
y

, −
(Suxx

N 2

)
y

)
· ν = 0,

(
−

(Suyy

N 2

)
x

,

(Suxy

N 2

)
x

)
· ν = 0

Finally, by defining

B1 =
((Suyy

N 2

)
x

,

(
−Suxy

N 2

)
x

)
(46)

B2 =
(

−
(Suyx

N 2

)
y

,

(Suxx

N 2

)
y

)
(47)

it is possible to write the Euler–Lagrange equation for the GC model as

α∇ ·
(

4|uxxuyy − uxyuyx |
N 3

∇u

)
+ ∇ · B1 + ∇ · B2 + u − f = 0 (48)

with the above boundary conditions.

APPENDIX B

GC as a Function of g

Here, we will give a proof for (11). First, we compute the derivatives in terms of g

ux = g′ x
r

,

uy = g′ y
r

,

uxx = g′′ x
2

r2
+ g′ y

2

r3
,

uyy = g′′ y
2

r2
+ g′ x

2

r3
,

uxy = uyx = g′′ xy

r2
− g′ xy

r3
,

1 + u2
x + u2

y = 1 + (g′)2.

Using the above in (7) we get

κG = uxxuyy − uxyuyx

(1 + u2
x + u2

y)
2 ,
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= (g′′ x2

r2 + g′ y2

r3 )(g′′ y2

r2 + g′ x2

r3 ) − (g′′ xy

r2 − g′ xy

r3 )
2

(1 + (g′)2)
2 ,

= (g′g′′ x4

r5 + 2g′g′′ x2y2

r5 + g′g′′ y4

r5 )

(1 + (g′)2)
2 ,

= g′g′′

r5(1 + (g′)2)
2 (x4 + 2x2y2 + y4),

= g′g′′

r5(1 + (g′)2)
2 (x2 + y2),

= g′g′′

r5(1 + (g′)2)
2 (r2)

2
,

= g′g′′

r(1 + (g′)2)
2 .

This completes the proof.
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