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The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi.Visual detection of
such parasite throughmicroscopic inspection is a tedious and time-consuming task. In this paper, we provide anAdaBoost learning
solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup.
With this method, we get 100% and 93.25% of sensitivity and specificity, respectively. A ROC comparison with the method most
commonly used for the detection of malaria parasites based on support vector machines (SVM) is also provided. Our experimental
work shows mainly two things: (1) Chagas parasites can be detected automatically using machine learning methods with high
accuracy and (2) AdaBoost + SVM provides better overall detection performance than AdaBoost or SVMs alone. Such results
are the best ones known so far for the problem of automatic detection of Chagas parasites through the use of machine learning,
computer vision, and image processing methods.

1. Introduction

The Chagas disease, also known as American trypanosomi-
asis, is a potentially life-threatening illness caused by the
protozoan parasite, Trypanosoma cruzi (T. cruzi). According
to the World Health Organization [1], it is found mainly in
Latin America, where it is mostly transmitted to humans by
the faeces of triatomine bugs.More than 25million people are
at risk of the disease and an estimated 10 million people are
infected worldwide, mostly in Latin America where Chagas
disease is endemic. Approximately 20,000 deaths attributable
to Chagas disease occur annually [2].

The Chagas disease presents itself in two phases. The
initial, acute phase lasts for about two months after infection.
During the acute phase, a high number of parasites circulate
in the blood. When the Chagas disease is diagnosed early
in this phase and a treatment is initiated, the patient can be
cured. During the chronic phase, the parasites are hidden
mainly in the heart and digestive muscle. In later years the
infection can lead to sudden death or heart failure caused by
progressive destruction of the heart muscle.

Some tests can be useful for making a diagnosis, depend-
ing on the phase of the disease. According to [3], the most
typical tests used for the diagnosis of the Chagas disease
are blood culture, chest X-ray echocardiogram, electrocar-
diogram (ECG), enzyme-linked immunoassay (ELISA), and
peripheral blood smears. Up to date, one of the most effective
ways of detecting the Chagas disease in its initial phase is
through the ELISA test. Another commonly used method is
the Chagas Stat-Pak rapid immunochromatographic test [4],
which provides a performance comparable to that obtained
with ELISA.

Screening blood donors for Chagas disease is of much
concern in all Latin American countries. Although theWorld
Health Organization (WHO) expert committee and some
guidelines recommend a single ELISA test to screen blood
donors [5], in some countries, such as Brazil, there is a more
restrictive regulation, recommending two simultaneous tests
of different techniques [6], performed in parallel. One of the
tests that can be performed in parallel is the inspection of
peripheral blood smears.
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A peripheral blood smear is basically a glass microscope
slide coated on one side with a thin layer of venous blood.
The slide is stained with a dye, usually Wright’s stain, and
examined under a microscope. Even though visual detection
of the Chagas parasite through microscopic inspection of
peripheral blood smears is the most widely used technique
for parasitemia determination, it is a time-consuming and
laborious process. When the number of blood screenings
performed in a laboratory increases, it becomes a problem.
To cope with this problem, we introduce an automatic
computational method for the detection of Chagas parasites
based onmachine learning and image processing algorithms.
Chagas detection using automatic image analysis is, to the
best of our knowledge, not yet studied as it is evidenced by
the lack of publications on this topic.

Currently, there is only a couple of papers reporting
results on Chagas parasites detection using machine learning
methods [8, 9]. In the former, a Gaussian discriminant
analysis is implemented and the resulting performance rates
are 0.0167 false-negatives, 0.1563 false-positives, 0.8437 true-
negatives, and 0.9833 true-positives. In the latter, a 𝑘-nearest
neighbors binary classifier is trained and the performances
are 0.98 and 0.80 in sensitivity and specificity terms, respec-
tively. The results reported in this paper using AdaBoost +
SVM have a significant improvement over the previous ones.

Apart from these two papers, no other study using
machine learning and computer vision methods has been
reported for the detection of the Chagas parasite, to the best
of our knowledge. However, such kind of techniques have
been extensively used for the detection of Malaria parasites
[10–16]. All the approaches we reviewed utilize supervised
and/or unsupervised learning methods to detect, classify and
quantify the number of malaria parasites on blood images.
The general process commonly reported can be divided in
three stages: (1) segmentation; (2) features extraction; and (3)

classification.
In the first stage, the segmentation is obtained through

different methods based on image histrogram computations.
The second stage is performed through the computation of
different features that can be classified in four categories
[15]: texture features, color features, geometric features, and
features obtained from human expert knowledge. The third
and final stage makes the biggest difference among the
methods, some applied neural networks [10], some others
applied statistical measures [11, 13], bayesian classifiers [12],
𝑘-means clustering [17], and other methods [14, 16]. Brief
summaries of the approachesmore relevant for our ownwork
are presented next.

In [10], an image classification system implementing
a two-stage tree classifier using back-propogation neural
networks is introduced. Such a system identifies malaria
parasites present in thin blood smears and classifies them
according to their different species. Image features based on
color, texture, and the geometry allow the system to perform
morphological and threshold selection of possible parasites,
distinguishing them from sane erythrocytes and other cells.

Similarly, the study presented in [11] provides a method
for quantification and classification of erythrocytes in
stained thin blood films infected with malaria parasites.

This approach is composed of three main phases. First, there
is a preprocessing step, which corrects luminance differences.
Second, there is a segmentation step that uses the normalized
RGB color space for classifying pixels either as erythrocyte or
background. Third, there is a two-step classification process
identifies infected erythrocytes and diagnoses the infection
stage, using a trained bank of classifiers. An interesting
characteristic of this method is that user intervention is
allowed when the approach cannot make a proper decision.
Automatic identification of infected erythrocytes showed a
specificity of 99.7% and a sensitivity of 94%. Meanwhile, the
infection stage was determined with an average sensitivity of
78.8% and average specificity of 91.2%.

In [12], the parasite detector uses a Bayesian pixel classi-
fier to mark stained pixels. The class conditional probability
density functions of the stained and the nonstained classes
are estimated using a nonparametric histogram method. The
stained pixels are further processed to extract features such
as Humoments, relative shapemeasurements, and color for a
parasite or nonparasite classifier. Finally a distance weighted
𝑘-nearest neighbor classifier is trained with the extracted
features achieving 74% of sensitivity, 98% of specificity, 88%
of positive prediction, and 95% of negative prediction values
for the malaria parasite detection.

Another malaria study based on pattern matching and
parameter optimization is presented in [13]. In this case, the
parasitaemia measurements are carried out by partitioning
the uninfected and infected cells using unsupervisedmachine
learning. A comparison of the performance is done with
a training-based method which improves the classification
rates giving 92% of precision and 95% of recall.

Even when some machine learning methods have been
successfully applied to the detection, classification, and
quantification of Malaria parasites, these methods cannot
be employed in a straightforward way to detect Chagas
parasites for one powerful reason: their morphology is
different. Malaria parasites have a ring shape (Figure 1(a))
while Chagas parasites have a curved shape, similar to a
shrimp (Figure 1(b)). This difference in their morphology
prevents us from using exactly the same features during the
very important stage of features selection.

In addition to detection algorithms, some authors have
developed complete automated systems. In [18], an auto-
mated system to identify and analyze parasite species on
thick blood films by image analysis techniques is presented.
The system comprises two main components: (1) image
acquisition unit and (2) image analysis module. The authors
have developed an image acquisition system that can be
easily mounted on most conventional light microscopes. It
automatically controls the movement of microscope stage
in 3-directional planes. The vertical adjustment (focusing)
can be made in a nanometer range (7–9 nm). Images are
acquiredwith a digital camera that is installed at the top of the
microscope. The captured images are analyzed by an image
analysis software which utilizes computer vision algorithms
to detect and identify malaria parasites.

Other works related to the application of pattern recogni-
tion methods for images taken with microscopes are those
used for the detection of special types of cells such as
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Figure 1: (a) Malaria parasites in early form (inside green squares); (b) Chagas parasite (inside red square); (c) blood cell that looks very
similar to a Chagas parasite (inside blue square).

cancerous cells [19] and cervical cells [20]. In the first work
the authors used the shape, size, and texture of the cells
to perform a classification, meanwhile in the second work
a 𝑘-means clustering algorithm for designing binary tree
classifiers is used, along with the Bhattacharyya distance
metric.

In this paper, we present a comparison of two of the most
robust algorithms for binary classification. Both methods
have been extensively studied and tested with difficult pattern
recognition problems on images such as face detection [21,
22]. We provide an AdaBoost and a SVM learning solution
to the task of Chagas parasite detection in blood images.
Our AdaBoost solution includes the definition of a new
set of Haar-like features specially designed for learning the
Chagas parasite’s morphology pattern. We give details of
the algorithms and our experimental setup. With the best
resulting method, AdaBoost, we get 100% and 93.25% of
sensitivity and specificity, respectively. Our experimental
work shows mainly two things: (1) Chagas parasites can be
detected automatically using machine learning methods and
(2) AdaBoost + SVM provides better detection performance
than plain AdaBoost or SVMs.

In the next section, we provide a brief review of the
two compared machine learning methods: AdaBoost and
SVM. Section 3 describes the four stages required to analyze
the images looking for subwindows containing a Chagas
parasite. The experimental work is detailed in Section 4,
which contains the experimental methodology we followed
and the experimental results. In Section 5, we discuss the
results and point out the issues that need to be addressed if
the system is to be established and deployed in reality. Finally,
our conclusions are explained in Section 6.

2. AdaBoost and SVM

AdaBoost is the short for Adaptive Boosting which is cur-
rently the most used boosting method. The goal of boosting
is to improve the accuracy of any given learning algorithm.
Boosting creates an ensemble of classifiers by training and

adding one component classifier at a time. Each new classifier
is trained using a different subset of examples.The new train-
ing subset contains examples that are incorrectly classified by
the current ensemble. By doing such an iterative selection of
difficult examples, boosting methods improve the accuracy
of any supervised machine learning algorithm. Although
each component classifier has an accuracy just greater than
average, the joint decision rule of the ensemble has a high
accuracy with all previously selected training examples [23].

2.1. Boosted Cascade of Simple Features. In 2001, Viola and
Jones [7] introduced an extremely rapid approach for visual
object detection motivated by the task of face detection. Such
an approach has as its central component an algorithm based
on the standard AdaBoost learning method. In addition to
the use of boosting, two are the characteristics that make
this approach very fast and efficient. First, the use of the
so-called integral image allows the features used by the
detector to be computed very quickly. Second, a method
for combining the increasingly more complex classifiers in a
cascade, as illustrated in Figure 2, allows background regions
of the image to be quickly discarded while spending more
computing resources on promising regions.

The algorithm introduced by Viola and Jones is presented
next.
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Figure 2: The detection cascade. Classifiers with increasing com-
plexity are arranged in a cascade scheme to allow background
regions of the image to be quickly discarded while spending more
computing resources on promising regions.
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2.2. Support Vector Machines. A support vector machine
(SVM) is a learning tool that originated in modern statistical
learning theory [24]. In recent years, SVM learning has
found a wide range of real-world applications, including
handwritten digit recognition, object recognition, speaker
identification, face detection in images, and text catego-
rization. The formulation of SVM learning is based on the
principle of structural risk minimization. SVM tends to
perform well when applied to data outside the training set
and it has been reported that SVM-based approaches are
able to significantly outperform competing methods in many
applications. SVM achieves this by focusing on the training
examples that are most difficult to classify. These training
examples are called the support vectors.

3. Chagas Parasites Detection

The whole process of Chagas detection is divided into four
stages, as illustrated in Figure 3. This process has been spe-
cially designed to allow the automatization of the diagnosis
as much as possible. The robustness of our methodology
relies on the four modular stages that can be implemented

Image
acquisition Preprocessing

Learning-based
postprocessing

AdaBoost
detection

Figure 3: The process of parasite detection consists of four stages:
(1) image adquisition via microscope; (2) image conversion from
RGB color to grayscale format; (3) possible parasites detection using
AdaBoost; and (4) amount of DNA pixels used to further discard
false positives.

as separated programming classes, where even parallel pro-
gramming, that is, using Graphics Processing Units (GPUs),
can also be employed to reduce the time of detection
[25]. This methodology is generic enough to be applied in
other object detection systems, particularly from the biology
domain where samples observed through a microscope are
stained.

The first step consists in obtaining a digital image using
a camera and a microscope. Once we have the image in
RGB format, in a second step we convert it to a grayscale
image to reduce the amount of information that theAdaBoost
algorithm needs to process. In the third stage, the grayscale
image is scanned using our previously trained AdaBoost
classifier in order to detect subwindows of pixels containing
possible parasites. Finally, in the fourth step, we use the green
component of the original RGB image to extract some three
features related to the number of pixels representing a high
DNA (deoxyribonucleic acid) content. Based on the amount
of DNA it is possible to discard false parasites. This last stage
is implemented with a SVM and it is very important because
it allows us to include, as part of the classification procedure,
a priori knowledge about the DNA of the parasites.

It is important to mention that the DNA from both
parasites and nonparasites such as white blood cells tends to
absorb different amounts of the stain employed. However, the
pattern generated by the stained DNA of parasites is clearly
different from the pattern generated by the stained DNA
of white blood cells. Such a difference is recognized by the
pattern recognition algorithms.

3.1. Stage 1: Image Acquisition. A group of mice were infected
with an inoculation of 5 × 104 blood trypomastigotes of T.
cruzi via intraperitoneal. Once the mice were infected, the
parasitaemia detection started in average between 11 and 15
days afterwards. At this time, the blood smears were prepared
and stained usingWright stain, which allows the observation
of the morphology of different blood cells, as well as parasites
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Figure 4: (a) Generic Haar-like features inspired by those proposed byViola and Jones [7]; (b) Haar-like features specially designed to capture
Chagas parasite’s morphology.

such as T. Cruzi, Leishmania sp., and Plasmodium sp,. After
the staining process the blood smears were placed vertically
and were left to dry. Finally, an optical Nikon Eclipse E600
microscope was used to take images, first at 10x and then at
100x, with a resulting size increase of 1000 times.

3.2. Stage 2: RGB to Grayscale Format. The conversion from
an RGB image to a grayscale image involves a simple mani-
pulation of matrices and is performed to reduce the amount
of information involved in the learning anddetection process.
The RGB color model is an additive color model in which
red, green, and blue light are added together in different
proportions to produce a wide array of colors. A color in
the RGB color model is described by indicating how much
of each of the red, green, and blue is included. The color is
expressed as a triplet (𝑟, 𝑔, 𝑏)where each component can vary
from zero to a defined maximum value, which in our case
was 256. RGB images are stored in memory as 𝑤 × ℎ × 3

matrices, where 𝑤 is the width and ℎ is the height of the
image measured in number of pixels. The third dimension of
the matrix which is of size 3 corresponds to the 3 different
color components of the image: red, green, and blue. To
convert any RGB image to a grayscale representation of its
luminance, first one must obtain the values of its red, green,
and blue components. Then, we need to add together 30% of
the red value, 59% of the green value, and 11% of the blue
value. These percentages are regarded as typical values. The
resulting image is stored in a 𝑤 × ℎ image containing pixels of
different intensities of the gray color.

3.3. Stage 3: Parasites Detection. The Chagas detection pro-
cess employs a set of Haar-like features and one AdaBoost
binary classifier. Haar-like features provide information
about clear and dark regions in images. Such information
is very useful to detect types of objects that share the
same morphological pattern. Since Chagas parasites can be
considered objects that share the same shrimp-like shape,
they can be detected using the appropriate set of Haar-like
features.

Given a detection window taken from a specific location
of the grayscale image, a Haar-like feature considers adjacent
rectangular regions, sums up the pixel intensities contained in
each rectangular region and calculates the difference between
these sums. This difference is then compared to a learned

threshold that separates nonparasites from parasites. The
rectangular regions are defined in such a way that relevant
dark pixels fall into one same region, meanwhile clear
pixels fall into another one. Figure 4 illustrates the Haar-like
features utilized to detect Chagas parasites.

The nine features in Figure 4(a) were inspired by the
originalHaar-like features proposed byViola and Jones in [7].
The set of fourHaar-like features in Figure 4(b)were designed
specifically to represent the shrimp-like shape adopted by
Chagas parasites. After running ten times the AdaBoost
algorithm and examining the number of times that the
algorithm chose theHaar-like features asweak learners, it was
possible to effectively discard those Haar-like features that
failed to capture important patterns of the Chagas parasites,
while keeping only the best ones. Figure 5 illustrates how
specially designed Haar-like features adapt better to the
morphology of the parasite.

Moreover, the position of these rectangular regions is
defined relative to a detection window that acts like a
bounding box to the target parasite. In the detection phase,
a window of the target size is moved over the input image,
and for each subsection of the image, the Haar-like feature is
computed.

The Haar-like features can be computed very fast using
the concept of integral image. Given an image 𝐼 of size 𝑅 ×

𝐶, where 𝑅 is the number of rows and 𝐶 is the number of
columns, the integral image of a point located in row 𝑟 and
column 𝑐 is defined as

𝑖𝑖 (𝑟, 𝑐) = ∑

𝑟

≤𝑟,𝑐

≤𝑐

𝐼 (𝑟

, 𝑐

) , (4)

where 𝐼(𝑟

, 𝑐

) is the gray intensity value of pixels located in

row 𝑟
 and column 𝑐

. Note that the number of rows increases
in the image from top to bottom and the number of columns
increases from left to right.

Now, given the same image 𝐼 and four points
𝑝
1
(𝑟
1
, 𝑐
1
), 𝑝
2
(𝑟
2
, 𝑐
2
), 𝑝
3
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3
, 𝑐
3
), and 𝑝

4
(𝑟
4
, 𝑐
4
) as illustrated

in Figure 6(a), and using the definition of integral image of
(4), we can compute the regions 𝑆

1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
as follows.

To calculate the sum of pixels in subwindow 𝑆
1
, denoted by

𝜎(𝑆
1
), we simply compute

𝜎 (𝑆
1
) = 𝑖𝑖 (𝑝

1
) = 𝑖𝑖 (𝑟

1
, 𝑐
1
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Figure 5: Haar-like features on top can capture more information about the morphology of the Chagas parasite, given their circular shape,
than the generic Haar-like features proposed by Viola and Jones, shown on the bottom.
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Figure 6: (a) Generic integral image computation; (b) computation of one Chagas-specific integral image.
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2
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3
we compute, respectively,
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Finally, for 𝑆
4
, we calculate

𝜎 (𝑆
4
) = 𝑖𝑖 (𝑟

4
, 𝑐
4
) − 𝑖𝑖 (𝑟
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2
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1
, 𝑐
1
) . (7)

In general, for an image of size 𝑅 × 𝐶, the whole integral
image 𝑖𝑖(𝑅, 𝐶) can be computed in only one pass over the
image and can be stored in a 2-dimensional array. Therefore,
to compute a subwindow like 𝑆

4
in Figure 6(a), we only need

to access the integral image array four times. Furthermore, to

compute the integral image of our Chagas Haar-like features,
we just need to segment eachHaar-like feature in theminimal
number 𝑛

𝑟
of subwindows required to cover it, this number

being 𝑛
𝑟

= 3 for the simplest one and 𝑛
𝑟

= 5 for the most
complex. The computation of one Chagas-specific integral
image with 5 subwindows is illustrated in Figure 6(b), where
theHaar-like feature template has been divided into 5 regions,
namely, 𝑅

1
, . . . , 𝑅

5
and in order to compute the feature value

we need to calculate 𝜎(𝑅
1
) + 𝜎(𝑅

2
) + 𝜎(𝑅

3
) + 𝜎(𝑅

4
) − 𝜎(𝑅

5
).

In conclusion, the computation of the integral image for our
specially designed Haar-like features is still very fast.

3.4. Stage 4: Postprocessing. The cascade application of the
AdaBoost algorithm together with the appropriate set of
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Figure 7: (a) Dark spot of pixels generated by an accumulation of DNA; (b) a DNA spot seen as a surface of 11 × 11 pixels.

Haar-like features is highly effective in finding most of the
trueChagas parasites.However, it also detects a small number
of false parasites. The postprocessing filter described in this
section helps to discard false parasites and decreases the false
positive rate of our method.

The postprocessing filter is focused on the analysis of one
dark spot of pixels appearing in all parasites’ bodies. This
spot, indicated by an arrow in Figure 7(a), corresponds to
an accumulation of DNA of the Chagas parasite. When the
image is plotted as a surface, it can be seen that suchDNAspot
has one particular valley-like shape, shown in Figure 7(b).
Since the shape of this dark spot and the low intensity values
taken by their corresponing pixels create a pattern very useful
to discriminate between parasites andnonparasites, theywere
used as a source for feature extraction as it is described next.

Given that the stained pixels have low intensities, these
values being not greater than 80, in the green component of
the RGB image, the following three featureswere used to train
a SVM.

(i) Feature 1. Given a subwindow detected by AdaBoost, the
percentage of pixels that have intensities at most 80 was
computed. This percentage, which represents the size of the
stained region of the parasite, is the first feature.

(ii) Feature 2. The mean of the intensities of all pixels with
individual intensities at most 80 was encountered in the
subwindow detected by AdaBoost.

(iii) Feature 3. The standard deviation of the intensities of all
pixels with individual intensities at most 80 was encountered
in the subwindow detected by AdaBoost.

The choice of the green component over the red and the
blue ones was decided after a careful visual examination of
a subset of images in the original RGB version and in all
3 individual components: red, green, and blue. After such
visual examination, it was clear that the green component was
superior to the others in terms of discriminative information.

In other words, the information provided by the green
channel allows us to perform amore accurate classification of
parasites and nonparasites.

4. Experimental Work

4.1. Experimental Methodology. We tested the proposed algo-
rithm using a data collected in the Instituto de Investiga-
ciones Regionales at the Universidad Autónoma de Yucatán,
México. We had available for our study a total of 120
color images of dimension 256 × 256 pixels. Sixty of these
images were specially selected to contain a Chagas parasite.
Meanwhile, the other 60 remaining images were selected
to contain nonparasites. Machine learning was employed to
generate our basic classifier algorithm, which was then used
for the more general Chagas parasite detection process. The
results we provide in this paper were obtained using a typical
pattern recognition methodology [26], using training and
testing sets of images.

A 10-fold cross-validation procedure was used for train-
ing and testing the AdaBoost and the SVM + Feature
Extraction learning methods. Since AdaBoost is sensible to
rotation, during the training phase, we generated a total of
840 positive examples of parasites images by rotating the
original images in increasing amounts of 15 degrees. For
every experiment, we used 756 positive images for training,
leaving 84 positive images for testing. Even though we were
limited by the number of positive examples available, the
number of negative examples could be defined as desired.
All negative examples were generated by random sampling
from the original 256 × 256 pixels images. For training,
AdaBoost used as many negative examples as possible to
reduce the false positive rate, and the final learnedmodel was
tested with 10800 negative images. In the case of the SVM +
Feature Extraction methods, we used 1296 negative images
for training and 10800 for testing. It is worth mentioning that
once the classifiers have been trained, the proper analysis of
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a 256 × 256 image, whichmeans that the algorithm is actually
looking for parasites, is performed in real time.We are talking
about a few milliseconds, using a commercial laptop or
desktop computer. Therefore, several hundred images can be
analyzed in a matter of minutes. Moreover, our program was
implemented inMatlab using 2 public libraries: fdtool, for the
AdaBoost implementation, and libsvm, for the support vector
machine implementation.

4.1.1. Comparisonwith Support VectorMachines. Theapplica-
tion of SVM learning requires the computation of one feature
vector for each subwindow that needs to be classified as
parasite or nonparasite. Such features vectors are then passed
to the SVM classifier which makes the final decision. The
selection of the features is a key part of the classification
process, simply because by using the wrong features the
learning algorithm cannot extract the patterns required to
build a confident classifier, resulting in a high classification
error. In order to obtain the best results with the application
of SVMs, we reviewed the most relevant published works
involving SVM learning and malaria parasite detection. So
that we can use for our experimental work those features that
have been previously reported to provide high quality results.

Color, shape, and texture features were selected to form a
38-dimensional feature vector. The color and shape features
are computed from 7 different histograms that contain
information about the red channel and green channel of the
RGB image, the hue and saturation component from theHSV
image, the grayscale pixel intensities and the result of the
application of the sobel operator horizontally and vertically
over the RGB image. Once the 7 histograms are computed,
5 values of each histrogram form the first 35 features. The
values taken from the histograms are the mean, the standard
deviation, kurtosis, skewness, and entropy. Finally, 3 more
features known as Tamura texture parameters are computed
from the original RGB images. Those final parameters are
coarseness, contrast, and direction. All theses features are
classified in [15] as part of their work in automatic detection
of Malaria parasites and they are described in [27].

4.1.2. Sensitivity, Specificity, and 𝐹-Measure. In order to eval-
uate the performance of our implemented AdaBoost clas-
sifier, we used three different statistical metrics: sensitivity,
specificity, and effectiveness. Sensitivity is the probability of
a positive test given that the patient is ill and it is computed
as follows:
sensitivity

=
number of true positives

number of true positives + number of false negatives
.

(8)

Specificity in turn is the probability of a negative test given
that the patient is well and it is computed as follows:
specificity

=
number of true negatives

number of true negatives + number of false positives
.

(9)

Due to the unbalanced class distribution between sub-
windows containing a Chagas parasite and subwindows con-
taining something else, the use of statistical metrics related to
the effectiveness were also considered. In these experiments,
the 𝐹-measure is used:

𝐹
𝛽

=
TPR ∗ PR

𝛽 ∗ TPR + (1 − 𝛽) ∗ PR (10)

with

TPR =
TP

TP + FN
,

PR =
TP

TP + FP
,

(11)

where TP stands for the true positives, FN for the false
negatives, and FP for the false positives. The 𝛽 coefficient
(0 < 𝛽 < 1) allows to assign relative weights to both the true
positive and precision rates. In these experiments, 𝛽 = 0.05 is
used, so the search was addressed to detection of TP.

4.2. Experimental Results

4.2.1. AdaBoost Results. Looking at the values provided in
Table 2, we see that AdaBoost methods are as good as SVM
methods in terms of sensitivity, withmean value of 1 and stan-
dard deviation of 0. All five methods were trained to detect
every parasite in the test sets. In terms of specificity, AdaBoost
+ Postprocessing is clearly the winner among the five meth-
ods being compared, with mean value of 0.9325 and standard
deviation of 0.0496, as given in Table 3. Tables 4 and 5
also show that AdaBoost + Postprocessing is superior to the
others, in terms of 𝐹-measures. In Figure 8, we illustrate
the result of our AdaBoost algorithm for Chagas parasite
detection.These results were obtained with a cascade of weak
classifiers of 11 stages. Figure 9 provides the ROC curves
for SVMs using different degrees of polynomial kernels and
Figure 10 compares the ROC curves for AdaBoost and SVMs
methods using different types of kernels.

4.2.2. SVM + Feature Extraction Results. SVM results are
good especially using linear and polynomial kernels. Fea-
tures used to train the SVM proved to contain the needed
information to build good classifiers. Those features were
created from color histograms and some other values that
encapsulate texture information of the image.The best results
for each type of kernel were obtained with the library libsvm,
finding first the best pair of parameters 𝛾 and 𝐶 for our
training examples.Those parameters are given in Table 1.The
AdaBoost + Postprocessing method was implemented using
a linear kernel SVM with parameters 𝛾 = 0.002 and 𝐶 =

0.5. These parameters were obtained through multiple cross-
validation experiments using different pairs of values for the
𝛾 and 𝐶 parameters.

4.2.3. AdaBoost versus SVM+Feature ExtractionComparison.
Results obtained with AdaBoost are more robust than those
obtained with SVM. However, the sensitivity and specificity
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Results of the Chagas parasite detection algorithm with a sample of images. Each column corresponds to a different example of
detection. The first row contains the color images in RGB format; the second row shows the grayscale images once the parasites have been
detected by the classifier; in the third row we show the result of the postprocessing stage; and the fourth row shows the final result of the
detection systems.
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Figure 9: ROC curves with SVMs and polynomial kernels ranging
from degrees 2 to 6.
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Figure 10: ROC curves using AdaBoost and SVMs with three
different types of kernel: linear, polynomial, and RBFs.

reached by using SVM cannot be considered bad, given the
difficulty of the task and their performance is comparable to
the performance obtained in the malaria parasite detection
task.

5. Discussion

Based on the results obtained with both machine learning
methods, AdaBoost and SVM, we can see that taking into
account features related to shape, color and texture seems

Table 1: Best 𝛾 and 𝐶 parameters for SVMs according to the type of
kernel employed and our training data.

Kernel 𝛾 𝐶

Linear 0.00003 8

Polynomial 0.0078 0.0312

Radial basis function 0.00003 8192

Table 2: Sensitivity by method.

Method Mean Std. Dev.
AdaBoost 1 0
AdaBoost + Postprocessing 1 0
SVM linear + Feature Extraction 1 0
SVM polynomial + Feature Extraction 1 0
SVM RBF + Feature Extraction 1 0

Table 3: Specificity by method.

Method Mean Std. Dev.
AdaBoost 0.7550 0.1820
AdaBoost + Postprocessing 0.9325 0.0496
SVM linear + Feature Extraction 0.8218 0.0118
SVM polynomial + Feature Extraction 0.6691 0.0035
SVM RBF + Feature Extraction 0.7111 0.0068

Table 4: 𝐹-measure (𝛽 = 1) by method.

Method Mean Std. Dev.
AdaBoost 0.7550 0.1820
AdaBoost + Postprocessing 0.9325 0.0496
SVM linear + Feature Extraction 0.8218 0.0118
SVM polynomial + Feature Extraction 0.6691 0.0035
SVM RBF + Feature Extraction 0.7111 0.0068

Table 5: 𝐹-measure (𝛽 = 10) by method.

Method Mean Std. Dev.
AdaBoost 0.9976 0.0018
AdaBoost + Postprocessing 0.9993 0.0004
SVM linear + Feature Extraction 0.9982 0.0001
SVM polynomial + Feature Extraction 0.9967 0.0000
SVM RBF + Feature Extraction 0.9971 0.0001

to be the most robust way to go when we target a parasite
detection task. The main advantage in using AdaBoost with
the approach introduced by Viola and Jones is the fast
computation of the features using the integral images trick,
as opposed to any other method of image segmentation that
are commonly used together with the SVM approach. Image
segmentation is a time-consuming task and its use without
parallel computation is almost impossible for applications
that require to scan many images in a short time.

The consideration of DNA pixels through a trained
SVM in the Ada + Postprocessing method is handled as a
postprocessing procedure because it is also a time-consuming
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(a) (b)

(c) (d)

Figure 11: Two representative images. In image (a), the number of dark pixels makes it easy for the detection system to consider it as a valid
parasite. In image (b), the number of dark pixels is larger than average, which makes it difficult for the detection system to consider it as a
valid parasite. An easy background looks like (c) and a difficult one looks like (d).

procedure which should be applied a reduced number of
times. If we attempt to interwine this counting procedure
with the typical AdaBoost algorithm using integral images,
we simply nullify the major advantage of the integral image
trick, which is a fast computation of the pixels addition.

In Figure 11, we present some examples of images that
are representative cases of ease and difficulty of classification.
When an image contains a high percentage of pixels stained
in dark purple, as in Figure 11(d), the algorithm finds it more
difficult to discard false positives.

Parasites and other stained objects like blood cells are
nonrigid and therefore vary in shape and size. The color is
important but its only use to distinguish between the Chagas
parasites and other things is not enough. On the other hand,
raw images cannot be used directly as a feature vector for two
main reasons: first the size of such a vector would increase
unnecesarily the time of computation and second the high
variation in shape and size would make it extremely difficult
for any machine learning algorithm to learn the correct

classifier. In the ideal case, features must be able to capture
shape and color characteristics of the objects to be classified.

Failing to detect Chagas is certainly a more serious
situation than having a false positive error. Diagnosing a
person suffering fromChagas as not having the disease would
put her life at risk. A false positive alarm on the contrary
would only incur in a labor cost for the doctor in charge
of confirming whether the parasite is present in the blood
sample.

In practice, the detection of T. cruzi by analysis of digital
images obtained from peripheral blood smears would bring
multiple benefits associated to the Chagas disease diagnosis.
First, it wouldmake possible the diagnosis of the disease in its
initial phase, which is the acute phase, because the presence of
the parasite in the blood would indicate with high probability
that the infection is present. As a consequence of the early
diagnosis, the human cases could be treated with drugs
such as Nifurtimox or Benznidazole, and the probability of
stopping the disease is very high. Second, given that human
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cases of Chagas are very difficult to be diagnosed during
the analysis routinely performed in national laboratories in
countries such as Mexico, an automated Chagas detection
system would contribute to estimate the local impact of the
disease and to determine the existence of any endemic region.

Moreover, the successful implementation of this algo-
rithm, would motivate the laboratories and hospitals to
reconsider the usefulness of the blood smears analysis and
to trust this test as a confident laboratory diagnosis. Further-
more, the laboratory technicians would reduce the number
of hours they need to sit in front of a microscope to analyze
so many samples day after day. Situation that is currently
originating themproblems such as visual fatigue and frequent
pain in the back.

Finally, this algorithm can be integrated as part of one
automated microscopic system for the adquisition of images
from blood smears. Such a device would be composed of
one optical microscope with a controllable electromechanical
surface specially designed to move the blood smears as
needed by the scanning software. The microscope would be
equipped with a high-resolution camera in order to take the
images. Images would be stored in hard drives to allow their
posterior analysis with our Chagas detection algorithm. This
device is currently being built as part of one CONACYT
research project on Chagas led by Dr. Ruiz-Piña in Mexico
(project code: salud-2009-01-113848).

6. Conclusions

In this paper, we have provided an approach to the Chagas
parasite detection problem based on AdaBoost learning.
Using the approachused byViola and Jones for the task of face
detection, we obtained high sensitivity and specificity values.
Chagas detection approaches based onmachine learning and
computer vision methods have been barely studied as it is
evidenced by the lack of literature on the topic. The most
promising method proposed for the detection of malaria
parasites was implemented and compared to AdaBoost. This
method consists basically in the use of different kinds of
values taken from color histograms in order to form the
feature vector that are later used to train a support vector
machine. Both shape and color proved to be important in
the task of Chagas parasite detection when high level of
sensitivity and specificity are required. Applying SVM for the
task of Chagas parasite detection requires the computation
of the 38-dimensional feature vector for each subwindow
that we want to classify as being a parasite or nonparasite.
However, if we proceed in this way with every subwindow
of the original image of size 256 × 256, the whole process
would be highly time-comsuming. One way to reduce the
number of subwindows that are worth checking is by means
of segmentation. Segmentation allows us to identify different
relevant objects in the image and discard those that does not
look like parasites. Given that most of the objects detected
during the segmentation are discarded, only a minor number
of subwindows are further check by the SVM. Although the
use of segmentation is very common for this kind of tasks,
it can also be a time-consuming process. AdaBoost applied

with integral images does not require segmentation, because
every subwindow can be checked in constant time, regardless
of its size.
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