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1. Introduction

Denote by k a fixed ground field and let Λ be any k-algebra (associative, with unit 
element 1). Given a Λ-module G, recall that, by definition, the endolength of G is its 
length as a right EndΛ(G)op-module. The module G is called generic iff it is indecompos-
able, of infinite length as a Λ-module, but with finite endolength. The algebra Λ is called 
generically tame if, for each d ∈ N, there is only a finite number of isomorphism classes 
of generic Λ-modules of endolength d. This notion was introduced by Crawley-Boevey 
in [9], providing a new definition of tameness, which coincides with the usual notion of 
tameness for finite-dimensional algebras over algebraically closed fields, but which makes 
sense for arbitrary algebras.

For example, consider the Kronecker k-algebra Λ, that is the path k-algebra of the 
quiver · −−−−−−→−−−−−−→ · Then, the Λ-module G determined by the representation

k(x)
x−−−−−−→−−−−−−→
1

k(x)

is a generic Λ-module with EndΛ(G) ∼= k(x). Moreover, if L is a finite field exten-
sion of k, then GL is a generic ΛL-module of the finite-dimensional k-algebra ΛL, with 
EndΛL(GL) ∼= L(x), see [16], (5.1).

In this article we continue the study of the notion of generic tameness for finite-
dimensional algebras Λ over perfect fields started in [4]. Our main results, which are ob-
tained only for real closed fields, reveal some structural properties of generic Λ-modules. 
For the sake of simplicity, in this introduction, we assume that the ground field is the field 
of real numbers R; the formulation of our results for real closed ground fields is essen-
tially the same. Denote by C the complex numbers field and by H the real quaternions. 
Consider the skew polynomial algebras R[x], C[x], H[x], and C[x, τ ], where τ denotes the 
complex conjugation; consider also the principal ideal domain D = R[x, y]/〈y2 +x2 +1〉. 
Then, we have their corresponding skew fields of fractions R(x), C(x), H(x), C(x, τ), and 
E = R(x)[y]/〈y2 + x2 + 1〉. We will prove the following result.

Theorem 1.1. Let Λ be a generically tame finite-dimensional R-algebra and G a generic 
Λ-module. Then,

1. There is an algebra Γ ∈ {R[x], C[x], H[x], C[x, τ ], D} and a Λ-Γ -bimodule Z, finitely 
generated by the right, such that G ∼= Z ⊗Γ Q, where Q is the skew field of fractions 
of Γ .

2. The R-algebra EndΛ(G)/ radEndΛ(G) is isomorphic to one of the following five al-
gebras R(x), C(x), H(x), C(x, τ), E.

The last result and the next one follow from the corresponding formulation for dital-
gebras (an acronym for differential tensor algebras), which is proved in Section 10.
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Theorem 1.2. Let Λ be a generically tame finite-dimensional R-algebra and let d be 

a non-negative integer. Then, there is a finite sequence of algebras Γ1, . . . , Γm ∈
{R[x], C[x], H[x], C[x, τ ], D}, and Λ-Γi-bimodules Z1, . . . , Zm, which are finitely gener-
ated as right Γi-modules, satisfying the following:

1. The functor Zi ⊗Γi
− : Γi-Mod−−→Λ-Mod preserves indecomposability and isomor-

phism classes, for any i ∈ [1, m].
2. For each generic Λ-module G with endol(G) ≤ d, there is a unique i ∈ [1, m] with 

G ∼= Zi ⊗Γi
Qi, where Qi is the skew field of fractions of Γi.

3. For almost every indecomposable Λ-module M with dimk M ≤ d, we have M ∼=
Zi ⊗Γi

N , for some i ∈ [1, m] and N ∈ Γi-mod.
4. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-

posable modules in Γi-mod and Γj-mod, respectively, such that Zi⊗Γi
Nu

∼= Zj⊗Γj
Mu

for all u ∈ U , then i = j.

Since the indecomposable modules of finite length over bounded principal ideal do-
mains are well understood, this result clarifies the relation between families of indecom-
posable Λ-modules with bounded dimension and generic Λ-modules. We provide more 

precise statements in 11.4.
The finiteness, in Theorem 1.1, of the list of possible isoclasses of the algebras 

EndΛ(G)/ radEndΛ(G), for all generic Λ-modules G and all finite-dimensional alge-
bras Λ, is characteristic of the real closed or algebraically closed case. Indeed, if k
is a non-algebraically closed and non-real closed field, as a consequence of Artin–
Schreier Theorem, there is a family {Ln}n∈N of finite field extensions of k with pairwise 

different degrees [Ln : k]. Then, if Λ denotes the Kronecker k-algebra described be-
fore, each finite-dimensional k-algebra ΛLn admits the generic ΛLn-module GLn with 

EndΛLn (GLn)/ radEndΛLn (GLn) ∼= Ln(x).
We have some final comments regarding our last section. In [4] we studied parametriza-

tions of indecomposable Λ-modules with bounded dimension over perfect fields, but the 

study of generic modules and their interaction with families of indecomposables with 

bounded dimension is not yet solved for general perfect fields. We considered in this 
paper the more manageable case of real closed fields, where we were able to do this: the 

main results for finite-dimensional algebras Λ are Theorems 11.2 and 11.4. Our argu-
ments use the fact that the degree of the algebraic closure of k is finite. The collateral
result on the finiteness of the family of principal ideal domains involved in this analysis 
is not surprising, since the real closed fields k admit very few finite-dimensional division 

k-algebras up to isomorphism.
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2. Constructibility and pregeneric modules

As usual, given any k-ditalgebra A, we denote by A-Mod the category of A-modules. 
The full subcategory of A-Mod formed by the finite-dimensional A-modules is denoted 
by A-mod. Let us first recall from [4] some terminology.

Definition 2.1. Let A be a layered ditalgebra, with layer (R, W ), see [6], §4. Given M ∈
A-Mod, denote by EM := EndA(M)op its endomorphism algebra. Then, M admits a 
structure of R-EM -bimodule, where m ·(f0, f1) = f0(m), for m ∈ M and (f0, f1) ∈ EM . 
By definition, the endolength of M , denoted by endol(M), is the length of M as a right 
EM -module.

A module M ∈ A-Mod is called pregeneric iff M is indecomposable, with finite en-
dolength, but with infinite dimension over the ground field k. The ditalgebra A is called 
pregenerically tame iff, for each natural number d, there are only finitely many isoclasses 
of pregeneric A-modules with endolength d.

Definition 2.2. Let A = (T, δ) be a triangular ditalgebra, with layer (R, W ), over any 
field k. Then,

1. A is called admissible iff R ∼= D1 × · · · × Dn, for some finite-dimensional division 
k-algebras D1, . . . , Dn and the R-R-bimodule W is finitely generated.

2. A is called almost admissible iff R ∼= Mm1(D1) × · · · × Mmn
(Dn), for some finite-

dimensional division k-algebras D1, . . . , Dn and the R-R-bimodule W is finitely 
generated.

Definition 2.3. We say that an almost admissible ditalgebra A, over a perfect field k, is 
constructible iff there is a finite sequence of reductions

DΛ = D 	−→ Dz1 	−→ Dz1z2 	−→ · · · 	−→ Dz1···zt ,

where DΛ is Drozd’s ditalgebra of some finite-dimensional k-algebra Λ, as in [6], (19.1), 
and there is an isomorphism of layered ditalgebras Dz1···zt ∼= A, for some finite set of 
reductions Dz1···zi−1 	−→ Dz1···zi of either of the types described in [4], (2.5) or in [4], (2.6) 
or in [4], (2.7). In this case, we say that A is constructible from Λ.

Remark 2.4. If the field k is perfect, any finite-dimensional k-algebra Λ splits over its 
radical. Then, Drozd’s ditalgebra D of Λ is an almost admissible ditalgebra over k. It is 
admissible if and only if Λ is basic.

If K is any field extension of the perfect field k and A is an almost admissible dital-
gebra over k, then the extended ditalgebra AK is an almost admissible ditalgebra over 
K (see [6], §20). If the admissible ditalgebra A is constructible from a finite-dimensional 
k-algebra Λ, then AK is an almost admissible ditalgebra constructible from the finite-
dimensional K-algebra ΛK , see [4], (4.3).
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Notation 2.5. Given a finite-dimensional algebra Λ over any field k, denote by P(Λ) the 
category of morphisms between projective Λ-modules. Let J be the radical of Λ. Then 
P1(Λ) denotes the full subcategory of P(Λ) whose objects are the morphisms α : P −−→Q

with image contained in JQ, and P2(Λ) denotes the full subcategory of P1(Λ) whose 
objects are the morphisms α : P −−→Q with kernel contained in JP . If Λ splits over its 
radical, we can consider Drozd’s ditalgebra D = DΛ and the usual equivalence functor 
ΞΛ : D-Mod−−→P1(Λ), see [6], (19.8).

Some of the following statements which include a constructibility assumption (remark-
ably 2.6, 5.2, and 6.1) are proved by transporting the corresponding known statement for 
modules over finite-dimensional algebras. We do not know if they can be proved directly 
in a more general context.

Theorem 2.6. Assume that A is an almost admissible ditalgebra, which is constructible 
from a finite-dimensional algebra Λ, over a perfect field k. Then, for any pregeneric 
A-module G, the algebra EndA(G) is local and has nilpotent radical.

Proof. From [10], (4.2) and [10], (4.4), the generic Λ-modules have local endomorphism 
algebras with nilpotent radical. Consider Drozd’s ditalgebra D = DΛ and the composition 
of functors

D-Mod ΞΛ−−→P1(Λ) Cok−−→Λ-Mod,

where Cok denotes the cokernel functor. Fix a pregeneric D-module G. If Λ = S ⊕ J

is a splitting over the radical J of Λ, then S is a finite-dimensional semisimple algebra. 
Then, since G has infinite k-dimension, the indecomposable object ΞΛ(G) cannot be 
of the form P −−→ 0. Hence, ΞΛ(G) ∈ P2(Λ). It follows that M = CokΞΛ(G) is a 
generic Λ-module, see [4], (4.4). The functor CokΞΛ induces a morphism of algebras 
φ : EndD(G) −−→ EndΛ(M), which induces an isomorphism EndD(G)/ radEndD(G) ∼=
EndΛ(M)/ radEndΛ(M), by [6], (31.6) and [6], (18.10). Then EndD(G) is a local algebra. 
Using [6], (18.10)(2), it also follows that rad EndD(G) is nilpotent.

Now, adopt the notation of 2.3. Consider the isomorphism of layered ditalgebras ξ :
Dz1···zt −−→A and the corresponding restriction functor Fξ : A-Mod−−→Dz1···zt-Mod. 
For i ∈ [1, t], consider the corresponding reduction functor Fi : Dz1···zi -Mod−−→
Dz1···zi−1 -Mod. Then, the composition

F := F1F2 · · ·FtFξ : A-Mod−−→D-Mod

is a full and faithful functor which preserves pregeneric modules. Indeed, this is the case 
for each one of the factors by [4], (2.2) and [4], (2.5)–(2.7). For the factors of type FX , 
we keep in mind that S = End(X)op/ radEnd(X)op is a finite-dimensional semisimple 
k-algebra and [6], (13.3), hence N ∈ AX -Mod is an infinite-dimensional indecomposable 
if and only if FX(N) = X⊗S N is so. Then, given a pregeneric A-module G, the module 
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F (G) is also pregeneric and, since the functor F induces an isomorphism EndA(G) ∼=
EndD(F (G)), we get what we wanted. �
3. Scalar restriction and pregeneric modules

Throughout this work, given a ditalgebra A = (T, δ), we denote with a roman A
the subalgebra [T ]0 of degree zero elements of the underlying graded algebra T of A, 
see [6], §1. Then, the categories A-Mod and A-Mod share the same class of objects, 
but there are more morphisms in A-Mod. There is a canonical embedding functor LA :
A-Mod−−→A-Mod, which is the identity on objects and maps each f0 ∈ HomA(M, N)
onto LA(f0) = (f0, 0).

Lemma 3.1. Let K be an extension of a field k. Assume that A = (T, δ) is a k-ditalgebra, 
consider the K-ditalgebra AK = (TK , δK) and the corresponding scalar extension functor 
(−)K : A-Mod−−→AK-Mod, as in [6], (20.2). We have a morphism of k-ditalgebras 
ξ : A −−→AK , given by ξ(t) = t ⊗ 1, for t ∈ T . Then, we have the associated restriction 
functor

Fξ : AK-Mod−−→A-Mod,

which we call the scalar restriction functor. It is a faithful functor satisfying the following:

1. The functor Fξ is a right adjoint to (−)K . The corresponding natural isomorphism 
is given for M ∈ A-Mod and N ∈ AK-Mod by

η : HomAK

(
MK , N

)
−−→ HomA

(
M,Fξ(N)

)
,

with η(f) = (η(f)0, η(f)1), where η(f)0[m] = f0[m ⊗ 1] and η(f)1(v)[m] =
f1(v ⊗ 1)[m ⊗ 1], for v ∈ V := [T ]1 and m ∈ M .

2. For M ∈ A-Mod, we have Fξ(MK) ∼=
∐

B
M , where B is a k-basis for K.

3. For N ∈ AK-Mod, we have [Fξ(N)]K ∼= N ⊗K K ⊗k K.

Proof. Take a morphism f ∈ HomAK (M, N). If Fξ(f0, f1) = (f0, f1ξ1) = 0, 
then f0 = 0 and f1(v ⊗ 1) = f1ξ(v) = 0, for any element v ∈ V . But f1 ∈
HomAK-AK (V K , HomK(M, N)), thus f1(v ⊗ λ) = f1(v ⊗ 1)λ = 0, and also f1 = 0. 
Thus, f = 0 and Fξ is a faithful functor.

(1): Assume M ∈ A-Mod and N ∈ AK-Mod. Then, the inverse of η is given by the 
linear map

ψ : HomA
(
M,Fξ(N)

)
−−→ HomAK

(
MK , N

)
,

with ψ(g) = (ψ(g)0, ψ(g)1), where ψ(g)0[m ⊗ λ] = λg0[m] and ψ(g)1(v ⊗ λ)[m ⊗ λ′] =
λλ′g1(v)[m], for v ∈ V , m ∈ M , and λ, λ′ ∈ K. The verification of this, together with 
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the fact that η and ψ are indeed well defined linear maps (natural in M and N) is 
straightforward.

(2): This is clear.
(3): An AK-module N can be considered naturally as an A-K-bimodule (with un-

derlying A-module Fξ(N)). Thus, Fξ(N) ∼= N ⊗K K in A-Mod. Therefore, [Fξ(N)]K ∼=
N ⊗K K ⊗k K in AK-Mod. �

The following three results adapt Lemmas 3.2(b) and 3.3(b) of [16] to our ditalgebras 
context.

Lemma 3.2. Let A be an almost admissible ditalgebra over any field k and take 
any field extension K of k. Given M, N ∈ A-Mod, consider the natural map α :
HomA(M, N)K −→ HomAK (MK , NK), as in [4], (5.1). Then, for every finitely gen-
erated RK-submodule Z of MK and every f ∈ HomAK (MK , NK) there exists g ∈
HomA(M, N)K such that f0 and α(g)0 coincide on Z.

Proof. Let B be a k-basis of K. Consider the isomorphism ζ : Fξ(NK) −−→
∐

B
N , and 

the adjunction isomorphism η : HomAK (MK , NK) −−→ HomA(M, Fξ(NK)), as in (3.1). 
For b ∈ B, denote by πb :

∐
B
N −→ N the canonical projection on the copy b of N , and by 

σb : N −→
∐

B
N the corresponding canonical injection. Given f ∈ HomAK (MK , NK), 

we will consider g :=
∑

b∈B0
πbζη(f) ⊗ b ∈ HomA(M, N)K , where B0 is a finite subset 

of B chosen as follows. From Z we can obtain a finitely generated R-submodule Z0
of M such that Z ⊆ ZK

0 . Choose a k-basis z1, . . . , zs for Z0, then there is a finite 
subset B0 of B such that (ζη(f))0[zi] ∈

∐
B0

N , for all i ∈ [1, s]. Thus, we can write 
(ζη(f))0[zi] =

∑
b∈B0

σ0
b (ni,b), where ni,b ∈ N . Equivalently, f0(zi ⊗ 1) =

∑
b∈B0

ni,b ⊗ b.
Now we show that α(g)0 and f0 coincide on ZK

0 , hence on Z. Take a typical generator 
zi ⊗ c of the K-vector space ZK

0 . Then,

α(g)0[zi ⊗ c] =
∑
b∈B0

(
πbζη(f)

)0[zi] ⊗ bc

=
∑
b∈B0

π0
b

( ∑
b′∈B0

σ0
b′(ni,b′)

)
⊗ bc

=
∑
b∈B0

ni,b ⊗ bc = f0(zi ⊗ 1)c = f0(zi ⊗ c). �

Lemma 3.3. Let A be an almost admissible ditalgebra over any field k, and take any field 
extension K of k. Assume that M, N ∈ A-Mod satisfy that MK and NK have a common 
non-zero direct summand. If EndA(M) is local with nilpotent radical, the module M is 
a direct summand of N in A-Mod.

Proof. We follow Kasjan’s argument in [16], (3.3). If MK and NK have a com-
mon direct summand then there exist morphisms f ∈ HomAK (MK , NK) and g ∈
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HomAK (NK , MK) such that gf is a non-zero idempotent of MK . Choose y ∈ MK

such that (gf)0(y) = y �= 0. Apply 3.2 to obtain f1, . . . , fa ∈ HomA(M, N); g1, . . . , gb ∈
HomA(N, M); and scalars λ1, . . . , λa, μ1, . . . , μb ∈ K, with f0(y) = (α[

∑a
i=1 fi⊗λi])0(y)

and g0(f0(y)) = (α[
∑b

j=1 gj⊗μj ])0(f0(y)). The morphism α satisfies α[h ⊗λ] = hKλ, for 
h ∈ HomA(M, N) and λ ∈ K. Thus, it gives a morphism of K-algebras EndA(M)K →
EndAK (MK) and 0 �= y = (gf)0(y) = (α[

∑b
j=1

∑a
i=1 gjfi ⊗ μjλi])0(y). It follows that ∑b

j=1
∑a

i=1 gjfi ⊗ μjλi is not nilpotent in EndA(M)K . But, by assumption, the algebra 
EndA(M) is local with nilpotent radical, hence, there exist i0 and j0 such that gj0fi0 is 
not nilpotent. Then, this composition gj0fi0 is an isomorphism. So, M is isomorphic to 
a direct summand of N , because idempotents split in A-Mod. �
Corollary 3.4. Let A be an almost admissible constructible ditalgebra over a perfect field 
k and take any field extension K of k. Assume that M, N ∈ A-Mod satisfy that MK

and NK have a common non-zero direct summand. If M is indecomposable with finite 
endolength, then M is a direct summand of N in A-Mod.

Proof. We have that EndA(M) is local with nilpotent radical: If M has infinite dimen-
sion, it is pregeneric and we can apply 2.6; if M is finite-dimensional, it follows from 
[6], (5.12). �
Lemma 3.5. Let A be a layered ditalgebra over a field k and let K be a finite field extension 
of k. Then, for M ∈ A-Mod, we have that

endol(M) ≤ endol
(
MK

)
≤ [K : k] × endol(M).

Proof. We show that Kasjan’s argument in [16], (3.3) works also in this context. The 
natural map α : HomA(M, N)K −−→ HomAK (MK , NK) is an isomorphism. Indeed, from 
[6], (4.10), we have a commutative diagram with exact columns

0 0
↓ ↓

HomA(M,N)K α−−→ HomAK (MK , NK)

σA⊗1

⏐⏐⏐⏐
 σAK

⏐⏐⏐⏐

PhomR-W (M,N)K α′

−−→ PhomRK-WK (MK , NK)

∂A⊗1

⏐⏐⏐⏐
 ∂AK

⏐⏐⏐⏐

HomR(W0 ⊗R M,N)K α′′

−−→ HomRK (WK
0 ⊗RK MK , NK),

where α′ and α′′ are the corresponding natural morphisms. Since K is a finite extension 
of k, we can apply [16], (3.2)(a) to obtain that the maps α′ and α′′ are isomorphisms 
and, therefore, α is an isomorphism too.
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It follows that, given any EndA(M)-submodule N of M , we have that NK is an 
EndAK (MK)-submodule of MK . The first inequality follows from the fact that the map 
N 	→ NK sends proper chains of EndA(M)-submodules of M onto proper chains of 
EndAK (MK)-submodules of MK .

For the second inequality, make E = EndA(M)op. Then, the module MK is an 
E-module through the k-algebra morphism β : E−−→ EndAK (MK)op induced by the 
scalar extension functor (−)K . Then, we have endol(MK) ≤ �E(MK) = �E(M ⊗k K) =
�E(M [K:k]) = [K : k] × �E(M) = [K : k] × endol(M). �
Lemma 3.6. Let A be a layered k-ditalgebra and K any field extension of k. Then, for 
any N ∈ AK-Mod, we have that endol(Fξ(N)) ≤ endol(N).

Proof. It follows from [4], (2.2). �
Lemma 3.7. If A is a k-ditalgebra, K is a finite separable field extension of k, and 
N ∈ AK-Mod, then N is a direct summand of [Fξ(N)]K .

Proof. We proceed as in [16], (4.1). The K-K-bimodule K ⊗k K is semisimple and the 
trivial bimodule K is a direct summand of K⊗kK. Then, from 3.1(3), any N ∈ AK-Mod
is a direct summand of N ⊗K K ⊗k K ∼= [Fξ(N)]K . �
Lemma 3.8. If A is an almost admissible constructible k-ditalgebra, K is a finite field 
extension of the perfect field k, and G is a pregeneric A-module, then GK admits no 
finite-dimensional direct summands.

Proof. Suppose that GK ∼= M ⊕N , where N is indecomposable and finite-dimensional 
over K. Thus, Fξ(N) is finite-dimensional and admits a decomposition Fξ(N) ∼=

⊕n
i=1 Li, 

with each Li ∈ A-mod indecomposable. Thus, [Fξ(N)]K ∼=
⊕n

i=1 Li
K . But, from 3.7, 

we know that N is an indecomposable direct summand of this module. Thus N is a 
direct summand of some LK

i . From 3.4, we have that G is a direct summand of Li, 
a contradiction. �
4. Endolength and realizations

In this section, which is a little technical, we recollect some basic properties of the re-
duction functors of type FX , and we give a brief discussion of some elementary properties 
of realizations of pregeneric modules (see 4.8).

Reminder 4.1. We recall some terminology from [6] and [3]. Let A = (T, δ) be any 
ditalgebra with layer (R, W ). Assume we have R-R-bimodule decompositions W0 =
W ′

0 ⊕ W ′′
0 and W1 = W ′

1 ⊕ W ′′
1 . Consider the subalgebra T ′ of T generated by R and 

W ′ = W ′
0 ⊕ W ′

1, and the subalgebra A′ of A generated by R and W ′
0. Let us assume 

furthermore that δ(W ′
0) ⊆ A′W ′

1A
′ and δ(W ′

1) ⊆ A′W ′
1A

′W ′
1A

′. Then, the differential 
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δ on T restricts to a differential δ′ on the algebra T ′ and we obtain a new ditalgebra 
A′ = (T ′, δ′) with layer (R, W ′). A layered ditalgebra A′ is called a proper subditalgebra of 
A if it is obtained from an R-R-bimodule decomposition of W as we have just described.

A proper subditalgebra A′ of a triangular ditalgebra A is called initial when its 
triangular filtrations coincide with the first terms of the triangular filtrations of A, see 
[6], (14.8).

The inclusion r : T ′ −−→T yields a morphism of ditalgebras r : A′ −−→A and, hence, 
a restriction functor (see [6], (2.4))

RA
A′ := Fr : A-Mod −−→A′-Mod.

The projection π : A = [T ]0 −−→ [T ′]0 = A′ yields an extension functor

EA
A′ := Fπ : A′-Mod−−→A-Mod.

When there is no danger of confusion, we forget subindices and superindices in restriction 
and extension functors.

Let A = (T, δ) be a ditalgebra with layer (R, W ). Then, an algebra B is called a proper 
subalgebra of A if and only if B = [T ′]0, for some proper subditalgebra A′ = (T ′, δ′) of A
associated to R-R-bimodule decompositions W0 = W ′

0⊕W ′′
0 and W1 = W ′

1 ⊕W ′′
1 , where 

W ′
1 = 0. In this case, the ditalgebra B := A′ is essentially the same as the algebra B, 

we also call B a proper subalgebra of A, the module categories B-Mod and B-Mod are 
canonically identified through the canonical embedding functor LB : B-Mod−−→B-Mod.

Remark 4.2. With the notation of 4.1, we notice that, sometimes, it is possible to define 
an extension functor EA

A′ : A′-Mod−−→A-Mod such that the following square commutes

A-Mod LA−−→ A-Mod

EA
A′

�⏐⏐⏐⏐
�⏐⏐⏐⏐ EA

A′

A′-Mod LA′−−→ A′-Mod,

which is of course a very useful property. This has been done and exploited in [5] for 
convex subditalgebras A′ of seminested ditalgebras A. In [4], this was done and exploited 
for proper subalgebras A′ of layered ditalgebras A. When A′ is a minimal subditalgebra of 
a seminested ditalgebra A, we can consider the functor EA

A′ mapping each A′-morphism 
(f0, f1) onto (f0, 0). This is crucial in the proof of our Theorem 5.4.

Unfortunately, this is not always possible. We give a simple example to illustrate this 
fact, where we provide A′-modules M and N with M ∼= N in A′-Mod but EA

A′(M) �
EA

A′(N) in A-Mod. Consider the nested k-ditalgebra A = (TR(W ), δ) defined by the 
following bigraph
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1 2x

α

β

with δ(α) = x = δ(β) and δ(x) = 0. Thus, A has layer (R, W ) with R = k × k, 
W0 = kα ⊕ kβ, W1 = kx and W = W0 ⊕ W1. It admits the triangular filtrations 
0 ⊆ kα ⊆ kα ⊕ kβ = W0 and 0 ⊆ kx = W1. Consider the proper subditalgebra A′ of A
defined by the R-R-bimodules W ′

0 = kα, W ′′
0 = kβ, and W ′

1 = kx. Then, A′ is an initial 
subditalgebra of A. The A′-modules M and N given by the representations k 1−−→ k and 
(k−−→ 0) ⊕ (0 −−→ k) give the wanted example.

Definition 4.3. Let A be an almost admissible ditalgebra, with layer (R, W ). Suppose 
E is some k-algebra and consider the decomposition 1 =

∑n
i=1 ei of the unit of R as a 

sum of central primitive orthogonal idempotents ei of R. Given M ∈ A-E-Mod, as in 
[6], (21.1), we can consider its length vector

�E(M) =
(
�E(e1M), . . . , �E(enM)

)
.

Lemma 4.4. Let k be a perfect field and let A be an almost admissible ditalgebra with layer 
(R, W ). Assume that AX is obtained from A by reduction, using a B-module X, where 
B is an initial subalgebra of A and X is a finite direct sum of pairwise non-isomorphic 
finite-dimensional indecomposable B-modules, see [6], (12.9). Then, Γ = EndB(X)op
admits the splitting Γ = S⊕P , where P is the radical of Γ , and AX is an admissible di-
talgebra with triangular layer (S, WX). We shall denote by {ei}ni=1 (respectively {fj}mj=1) 
the orthogonal primitive central idempotents given by the unit decomposition of R (resp. 
of S). Then, for any k-algebra E, we have:

1. The associated functor FX : AX-Mod−−→A-Mod, see [6], (12.10), is full and faith-
ful. Moreover, endol(N) ≤ endol(FX(N)), for any N ∈ AX-Mod.

2. The induced functor FE
X : AX-E-Mod−−→A-E-Mod, see [6], (21.3), satisfies that 

�E(N) ≤ �E(FE
X (N)), for any N ∈ AX-E-Mod.

3. For any N ∈ AX-E-Mod, we have �E(FE
X (N))t = [X]�E(N)t, where [X] is the 

matrix with non-negative integral entries [X]i,j = dimSfj (eiXfj).

Proof. The finite-dimensional algebra Γ splits over its radical because k is a perfect 
field. The algebra S is basic because the indecomposable direct summands of X are 
pairwise non-isomorphic. From [6], (5.6), we know that A is a Roiter ditalgebra. Since 
B is a subalgebra of A, the B-module X is admissible, see [6], (12.4). The B-module X
is complete by [6], (13.3), and it is triangular by [6], (17.4). Then, AX is a triangular 
ditalgebra, its natural triangular structure is described in [6], (14.10). From [6], (13.5), 
we know that FX is full and faithful.

Recall that the triangular B-module X admits a right additive B-S-bimodule filtration 
F(X) : 0 = X0 ⊆ X1 ⊆ · · · ⊆ X
X = X, such that XtP ⊆ Xt−1, for all t ∈ [1, �X ]. We 
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know that any N ∈ AX -E-Mod is an S-E-bimodule via ne := αN (e)0(n), where αN :
E−−→ EndAX (N)op comes from the given A-E-bimodule structure of N ∈ AX -E-Mod, 
n ∈ N , and e ∈ E, see [6], (21.1). Thus, each eiXt ⊗S N inherits a natural structure of 
an Rei-E-bimodule. Namely, (x ⊗n) � e := x ⊗ (ne), for x ∈ eiX

t and n ∈ N . We denote 
the length of submodules or quotients of these modules with the symbol ��E .

From [6], (12.10) and [6], (21.3), the morphism αFX(N) : E−−→ EndA(FX(N))op satis-
fies, for e ∈ E, n ∈ N , and x ∈ X, the equality (αFX(N)(e))0[x ⊗n] = FX(αN (e))0[x ⊗n] =
x ⊗αN (e)0(n) +

∑
ξ xpξ⊗αN (e)1(γξ)[n], where (pξ, γξ)ξ is a dual basis for the projective 

right S-module P . Consider the structure of Rei-E-bimodule on eiFX(N) = eiX ⊗S N

determined by the A-E-bimodule FE
X (N), that is (x ⊗ n) · e = αFX(N)(e)0[x ⊗ n], for 

x ∈ eiX and n ∈ N . From the previous formula for αFX(N)(e)0, we immediately ob-
tain that each eiXt ⊗S N is an Rei-E-subbimodule of eiFX(N). We write the length of 
submodules or quotients of these modules with the symbol �E .

We can show that ��E(eiXt ⊗S N) = �E(eiXt ⊗S N), for any t ∈ [0, �X ], as in the 
proof of [6], (25.7). Then, for t = �X , we have X = Xt, and

�E(eiX ⊗S N) = ��E(eiX ⊗S N) = ��E(⊕jeiXfj ⊗S fjN)

=
∑
j

��E(eiXfj ⊗Sfj fjN)

=
∑
j

dimSfj [eiXfj ]�E(fjN).

We have an induced functor FE
X : AX -E-Mod−−→A-E-Mod, which is full and faith-

ful by [6], (21.3). Each fj = (f0
j , 0) ∈ EndB(X)op is a non-zero idempotent, thus 

Xfj �= 0, and eiXfj �= 0, for some i. Then, we have �E(FE
X (N)) =

∑
i �E(eiX ⊗S N) =∑

i,j dimSfj [eiXfj ]�E(fjN) ≥
∑

j �E(fjN) = �E(N). We have proved (2) and (3).
Finally, given N ∈ AX -Mod, consider the algebra E := EndAX (N)op. Then, we have 

an isomorphism E ∼= EndA(FX(N))op induced by FX , which provides, by restriction 
the structure of right E-module of FE

X (N). Then, endol(N) = �E(N) ≤ �E(FE
X (N)) =

endol(FX(N)), and (1) holds. �
The proof of the following statement is similar to that of the preceding one (see also 

[6], (25.7)).

Lemma 4.5. Let A be a seminested ditalgebra with layer (R, W ), over an algebraically 
closed field. Assume that AX is a seminested ditalgebra obtained from A by reduction, 
using a complete triangular admissible B-module X, where B is an initial subalgebra 
of A. Thus, AX has layer (S, WX), where Γ = EndB(X)op admits the splitting Γ =
S⊕P . We shall denote by {ei}ni=1 (respectively {fj}mj=1) the orthogonal primitive central 
idempotents given by the unit decomposition of R (resp. of S). Then, for any k-algebra E, 
we have:
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1. The associated functor FX : AX-Mod−−→A-Mod, see [6], (12.10), is full and faith-
ful. Moreover, endol(N) ≤ endol(FX(N)), for any N ∈ AX-Mod.

2. The induced functor FE
X : AX-E-Mod−−→A-E-Mod, see [6], (21.3), satisfies that 

�E(N) ≤ �E(FE
X (N)), for any N ∈ AX-E-Mod.

3. For any N ∈ AX-E-Mod, we have �E(FE
X (N))t = [X]�E(N)t, where [X] is the 

matrix with non-negative integral entries [X]i,j = rankSfj (eiXfj).

Lemma 4.6. Let A be a layered ditalgebra over a perfect field k. Assume that AX is the 
layered ditalgebra obtained from A by reduction, using a finite-dimensional B-module X, 
where B is a proper subalgebra of A. Assume that X is a complete triangular admissible 
B-module and consider the associated functor FX : AX-Mod−−→A-Mod. Then, there is 
a constant C such that

1. For any N ∈ AX-Mod, we have endol(N) ≤ C × endol(FX(N)).
2. For any k-algebra E, the induced functor FE

X : AX-E-Mod−−→A-E-Mod satisfies 
that �E(N) ≤ C × �E(FE

X (N)), for any N ∈ AX-E-Mod.

Proof. The finite-dimensional algebra Γ = EndB(X)op admits the splitting Γ = S ⊕ P , 
where P is the radical of Γ , because k is perfect. Thus, S is a semisimple algebra. Consider 
the canonical central primitive orthogonal idempotents {fj}mj=1 of S. Thus, each Sfj is 
a simple algebra and we can choose a constant C such that (Xfj)(C) ∼= Sfj ⊕ Zj , for 
all j, for some appropiate right Sfj-modules Zj .

Given a k-algebra E and N ∈ AX -E-Mod, as in the last proof, we can show that, in 
order to calculate the length of the E-module FE

X (N), we can calculate the length of the 
E-module X ⊗S N with the usual action of E on the second tensor factor N . Then, we 
obtain the following: �E(N) = �E(

⊕
j fjN) =

∑
j �E(fjN) =

∑
j �E(Sfj ⊗Sfj fjN) ≤∑

j �E((Xfj)(C) ⊗Sfj fjN) = C ×
∑

j �E(Xfj ⊗Sfj fjN) = C × �E(X ⊗S N) = C ×
�E(FE

X (N)). Then, (2) holds. Item (1) is obtained from (2) as in the last proof. �
The following fact applies in particular to the situations considered in the three pre-

ceding lemmas.

Lemma 4.7. Let A be a layered ditalgebra over a field k. Assume that AX is the layered 
ditalgebra obtained from A by reduction, using a complete triangular admissible B-module 
X, where B is a proper subalgebra of A. Thus, AX has layer (S, WX), where Γ =
EndB(X)op admits the splitting Γ = S ⊕ P . Denote by μ(X) the number of generators 
in a set of generators of the right S-module X with minimal cardinality. Then, we have:

1. The associated functor FX : AX-Mod−−→A-Mod is full and faithful. Moreover, for 
any N ∈ AX-Mod, we have

endol
(
FX(N)

)
≤ μ(X) × endol(N).
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2. For any k-algebra E, the induced functor FE
X : AX-E-Mod−−→A-E-Mod satisfies 

that �E(FE
X (N)) ≤ μ(X) × �E(N), for any N ∈ AX-E-Mod.

Proof. The functor FX is full and faithful by [6], (13.5).
Given a k-algebra E and N ∈ AX -E-Mod, as in the proof of 4.4, see also [6], (25.7), we 

can show that, in order to calculate the length of the E-module FE
X (N), we can calculate 

the length of the E-module X⊗SN with the usual action of E on the second tensor factor 
N . From an epimorphism Sμ(X) −−→X of right S-modules, we obtain an epimorphism of 
right E-modules Sμ(X)⊗SN −−→X⊗SN . Then, we obtain: �E(FE

X (N)) = �E(X⊗SN) ≤
�E(Nμ(X)) = μ(X) ×�E(N). Then, (2) holds. Item (1) is obtained from (2) as before: take 
E = EndAX (N)op and notice that endol(N) = �E(N) and endol(FX(N)) = �E(FE

X (N)), 
because FX is full and faithful. �

We need to adapt to our context some definitions and results due to Crawley-Boevey, 
see [9], §5. Given a principal ideal k-domain Γ (which we always assume to be infinite-
dimensional over k), we denote by Irred(Γ ) a complete set of inequivalent irreducible 
elements of Γ . The following definition is a little bit more general than [5], (2.4). It gen-
eralizes the original definition of realization given by Crawley-Boevey in [9] for generic 
modules over finite-dimensional algebras.

Definition 4.8. Let A be a layered ditalgebra over any field k, G a pregeneric A-module, 
and Γ some principal ideal k-domain. Then, a realization Z for G over Γ is an 
A-Γ -bimodule Z, which is finitely generated as a right Γ -module and such that

G ∼= Z ⊗Γ Q in A-Mod and endol(G) = dimQ(Z ⊗Γ Q),

where Q denotes the skew field of fractions of Γ .

Remark 4.9. Assume that G and G′ are isomorphic pregeneric A-modules. Then, if Z is 
a realization of G over Γ , it is also a realization of G′ over Γ .

The precedent definition has an obvious version for an arbitrary algebra Λ (maybe 
infinite-dimensional) and a pregeneric Λ-module G (and we have the remark correspond-
ing to the previous statement). If Λ is finite-dimensional, the pregeneric Λ-modules 
coincide with the generic Λ-modules.

Remark 4.10. If Γ is a principal ideal k-domain and Q is its skew field of fractions, then 
Γ is a realization of the pregeneric Γ -module Q. In this paper, realizations of pregeneric 
modules will appear as images of realizations of pregeneric modules under compositions 
of the special kind functors studied in Lemmas 4.14 and 4.16–4.19, starting from the 
case of a principal ideal k-domain just described.

Lemma 4.11. Let A be a layered ditalgebra, Γ a principal ideal k-domain with skew 
field of fractions Q, and Z an A-Γ -bimodule, finitely generated by the right, such that 
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the A-module G = Z ⊗Γ Q is pregeneric. Make EG = EndA(G)op and assume that 
QG := EG/ radEG is a skew field. Let QZ be the k-subalgebra of EG defined as the image 
of the k-algebra morphism μ : Q −−→EG such that μ(q) = (idZ ⊗ μq, 0), where q ∈ Q

and μq is right multiplication by q in Q. Then, Z is a realization of G iff η(QZ) = QG, 
where η = ηG : EG −−→EG/ radEG = QG denotes the quotient map.

Proof. Let 0 ⊆ G1 ⊆ · · · ⊆ G
 = G be a composition series of the EG-module G. 
Since QZ ≤ EG this is a series of QZ-subspaces of G. We have that η(QZ) ≤ QG, 
each Gi/Gi−1 is a one-dimensional QG-vector space, so each Gi/Gi−1 is a QZ-vector 
space with dimQZ

(Gi/Gi−1) = dimη(QZ)(Gi/Gi−1). It follows that, [QG : η(QZ)] =
dimQZ

(Gi/Gi−1), and we obtain

dimQ(Z ⊗Γ Q) = dimQZ
G = endol(G)

[
QG : η(QZ)

]
.

As a consequence, Z is a realization of G over Γ iff η(QZ) = QG. �
We have the corresponding statement for finite-dimensional algebras with a similar 

proof.

Lemma 4.12. Let Λ be a finite-dimensional algebra, Γ a principal ideal k-domain with 
skew field of fractions Q, and Z a Λ-Γ -bimodule, finitely generated by the right, such 
that G = Z ⊗Γ Q is a generic Λ-module. Denote by EG = EndΛ(G)op and assume that 
QG := EG/ radEG is a skew field. Let QZ be the k-subalgebra of EG defined as the image 
of the k-algebra morphism μ : Q −−→EG such that μ(q) = idZ ⊗μq, where q ∈ Q and μq

is right multiplication by q in Q. Then, Z is a realization of G iff η(QZ) = QG, where 
η = ηG : EG −−→EG/ radEG = QG denotes the quotient map.

In the context of the last lemma, if k is algebraically closed, Λ is tame, and G is a 
generic Λ-module, by Crawley-Boevey’s work, we know that QG

∼= k(x). If Γ = k[x]f is 
a rational algebra with field of fractions Q = k(x), then the last lemma applies to any 
generic Λ-module of the form G = Z ⊗Γ Q.

Lemma 4.13. Assume that F : A-Mod−−→B-Mod is a k-linear functor, where A and B
are layered ditalgebras. Suppose that Γ is a principal ideal k-domain with skew field of 
fractions Q, and Z is an A-Γ -bimodule. Assume that F satisfies the following:

1. F (Z) admits a structure of right Γ -module, transforming F (Z) into a B-Γ -bimodule.
2. There is an isomorphism ρ : F (Z⊗Γ Q) −−→F (Z) ⊗Γ Q of B-modules such that, for 

any q ∈ Q, the following square commutes in B-Mod

F (Z ⊗Γ Q) ρ−−→ F (Z) ⊗Γ Q

F (1Z⊗μq,0)

⏐⏐⏐⏐

⏐⏐⏐⏐
(1F (Z)⊗μq,0)

ρ

F (Z ⊗Γ Q) −−→ F (Z) ⊗Γ Q
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3. The morphism φ : EZ⊗ΓQ −−→EF (Z⊗ΓQ) given by F maps radEZ⊗ΓQ into 
radEF (Z⊗ΓQ) and so it induces a morphism φ in the commutative square

EZ⊗ΓQ
φ−−→ EF (Z⊗ΓQ)

ηZ⊗Γ Q

⏐⏐⏐⏐

⏐⏐⏐⏐
ηF (Z⊗Γ Q)

QZ⊗ΓQ

φ
−−→ QF (Z⊗ΓQ)

where QZ⊗ΓQ and QF (Z⊗ΓQ) denote the quotient algebras of EZ⊗ΓQ and EF (Z⊗ΓQ)
modulo the radical, respectively, and the vertical maps are the canonical projections.

As before, denote by QZ (resp. QF (Z)) the subalgebra of EZ⊗ΓQ (resp. EF (Z)⊗ΓQ) de-
termined by the morphisms of the form (1 ⊗ μq, 0), where μq is multiplication by q and 
q runs in Q. Then,

a. If φ is injective and ηF (Z)⊗ΓQ(QF (Z)) = QF (Z)⊗ΓQ, then ηZ⊗ΓQ(QZ) = QZ⊗ΓQ;
b. If φ is a bijective map and ηZ⊗ΓQ(QZ) = QZ⊗ΓQ, then ηF (Z)⊗ΓQ(QF (Z)) =

QF (Z)⊗ΓQ.

Proof. Let us denote by ψ the following composition of morphisms of algebras:

EZ⊗ΓQ
φ−−→EF (Z⊗ΓQ)

ζ−−→EF (Z)⊗ΓQ,

where ζ is the isomorphism given by conjugation by ρ. From our assumption in item 2, we 
obtain ψ(QZ) = QF (Z). Then, from our assumption in item 3, we get ηF (Z)⊗ΓQ(QF (Z)) =
ηF (Z)⊗ΓQψ(QZ) = ψηZ⊗ΓQ(QZ), where, again, ηF (Z)⊗ΓQ : EF (Z)⊗ΓQ −−→QF (Z)⊗ΓQ

denotes the canonical projection to the quotient algebra of EF (Z)⊗ΓQ modulo its radical, 
and ψ : QZ⊗ΓQ −−→QF (Z)⊗ΓQ is the map induced by ψ. Then, under the assump-
tions of a, the map ψ is injective and ψ(QZ⊗ΓQ) ⊆ QF (Z)⊗ΓQ = ηF (Z)⊗ΓQ(QF (Z)) =
ψηZ⊗ΓQ(QZ). Thus, ηZ⊗ΓQ(QZ) = QZ⊗ΓQ. While, under the assumptions of b, the map 
ψ is bijective and ηF (Z)⊗ΓQ(QF (Z)) = ψηZ⊗ΓQ(QZ) = ψ(QZ⊗ΓQ) = QF (Z)⊗ΓQ. �
Lemma 4.14. Let Λ be a finite-dimensional algebra over a perfect field k and consider its 
Drozd’s ditalgebra D. Consider the usual equivalence functor ΞΛ : D-Mod−−→P1(Λ), 
the cokernel functor Cok : P1(Λ) −−→Λ-Mod, and the transition bimodule Z, as in 
[6], (22.18). Let Γ be a principal ideal k-domain with skew field of fractions Q. Assume 
that G is a pregeneric D-module with realization Z0 over Γ , and that QG is a skew field. 
Then, Z ⊗D Z0 is a realization of the generic Λ-module CokΞΛ(G) over Γ .

Proof. Denote by F the following composition of functors

D-Mod LD−−→D-Mod ΞΛ−−→P1(Λ) Cok−−→Λ-Mod.
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By [6], (22.18), there is an isomorphism of functors F (Z0 ⊗Γ −) −−→F (Z0) ⊗Γ −. 
In particular, we have an isomorphism ρ : F (Z0 ⊗Γ Q) −−→F (Z0) ⊗Γ Q such that 
(1F (Z0)⊗ΓQ⊗μq, 0)ρ = ρF (1Z0⊗μq, 0), for all q ∈ Q. Thus, items 1 and 2 of 4.13 are sat-
isfied by F . By [6], (18.10), the map φ of 4.13 is well defined here and surjective. It is injec-
tive because QG

∼= QZ0⊗ΓQ is a skew field. By assumption, Z0 is a realization of Z0⊗Γ Q, 
thus ηZ0⊗ΓQ(QZ0) = QZ0⊗ΓQ, then from 4.13(b), ηF (Z0)⊗ΓQ(QF (Z0)) = QF (Z0)⊗ΓQ. We 
also know that CokΞΛ(G) = F (G) ∼= F (Z0 ⊗Γ Q) ∼= F (Z0) ⊗Γ Q is a generic Λ-module. 
Thus, F (Z0) is a realization of F (Z0) ⊗Γ Q over Γ . By [6], (22.18)(2), there is an iso-
morphism of functors F ∼= Z ⊗D −. Moreover, CokΞΛ(Z0) = F (Z0) ∼= Z ⊗D Z0 as 
Λ-Γ -bimodules, so Z ⊗D Z0 is a realization of CokΞΛ(G) over Γ . �
Lemma 4.15. Let Λ be a tame finite-dimensional algebra over an algebraically closed 
field k and consider its Drozd’s ditalgebra D. For i ∈ [1, 2], let Gi be a pregeneric 
D-module, Zi a D-Γi-bimodule, where Γi is a rational k-algebra and Zi is a finitely 
generated right Γi-module. Assume that Z1 and Z2 are realizations of G1 and G2, over 
Γ1 and Γ2, respectively. If there is an infinite subset P of Irred(Γ2) such that, for all 
p ∈ P , we have

Z2 ⊗Γ2 Γ2/
(
pip

) ∼= Z1 ⊗Γ1 Γ1/(qp) in D-Mod,

for some qp ∈ Γ1 and ip ∈ N, then G2 ∼= G1.

Proof. The proof given in [5], (2.11) also works here for our possibly non-basic finite-
dimensional algebra Λ. We have to use 4.14 and Crawley-Boevey’s results on tame 
algebras [9], (4.4) and [9], (5.2)(4). Here Drozd’s ditalgebra D may be not admissible 
(hence may be not seminested). �
Lemma 4.16. Let A0 be a proper subditalgebra of the layered ditalgebra A. Denote by 
E0 : A0-Mod−−→A-Mod the extension functor, as in 4.1. Assume that M ∼= N in 
A0-Mod implies that E0(M) ∼= E0(N) in A-Mod. Suppose that Z0 is a realization of 
a pregeneric A0-module G0 over a principal ideal k-domain Γ . Then, E0(G0) is a pre-
generic A-module. If we have furthermore that EG0 and EE0(G0) are local with nilpotent 
radical, then E0(Z0) is a realization of the pregeneric A-module E0(G0) over Γ .

Proof. We know that Z0 is a realization of Z0⊗Γ Q, where Q is the skew field of fractions 
of Γ . In particular, G0 ∼= Z0 ⊗Γ Q in A0-Mod and, by assumption, E0(Z0) ⊗Γ Q ∼=
E0(Z0⊗Γ Q) ∼= E0(G0) in A-Mod. By [4], (2.4)(1), E0(G0) is indecomposable in A-Mod. 
As in [5], (2.5), we can show that endol(E0(Z0) ⊗Γ Q) is finite. It follows that E0(G0) is 
a pregeneric A-module.

It is clear that FLA(E0(Z0) ⊗Γ −) = LA0(F (E0(Z0)) ⊗Γ −), where F = R0 :
A-Mod−−→A0-Mod denotes the restriction functor. Thus, items 1 and 2 of 4.13 are 
satisfied by this functor F and for the A-Γ -bimodule Z = E0(Z0).
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Now, assume that EG0 and EE0(G0) are local with nilpotent radical. Then, the 
morphism φ : EE0(G0) −−→ER0(E0(G0)) = EG0 given by the restriction functor in-
duces an injective map modulo the radicals: φ : QE0(G0) −−→QR0(E0(G0)) = QG0 . 
Since R0(E0(Z0)) = Z0 is a realization of R0(E0(Z0)) ⊗Γ Q = Z0 ⊗Γ Q over Γ , by 
4.11, we get ηR0(E0(Z0))⊗ΓQ(QR0(E0(Z0))) = QR0(E0(Z0))⊗ΓQ. Then, by 4.13(a), we get 
ηE0(Z0)⊗ΓQ(QE0(Z0)) = QE0(Z0)⊗ΓQ. Again by 4.11, this means that E0(Z0) is a realiza-
tion for the pregeneric A-module E0(Z0) ⊗Γ Q over Γ . �
Lemma 4.17. Assume that ξ : A −−→A′ is a morphism of layered ditalgebras and con-
sider the functor Fξ : A′-Mod−−→A-Mod induced by restriction using the morphism ξ. 
Let Γ be a principal ideal k-domain with skew field of fractions Q. Assume that G is 
a pregeneric A′-module with realization Z over Γ and that QG is a skew field. Then 
if Fξ is full and faithful, the pregeneric A-module Fξ(G) admits the realization Fξ(Z)
over Γ .

Proof. There is an isomorphism FLA′(Z ⊗Γ −) −−→LA(F (Z) ⊗Γ −), where F = Fξ, 
and LA′ and LA denote canonical embeddings. In particular, we have an isomorphism 
ρ : F (Z ⊗Γ Q) −−→F (Z) ⊗Γ Q satisfying item 2 of 4.13. Since Fξ is full and faithful, 
the map φ of 4.13 is well defined here and bijective. By assumption, Z is a realization 
of Z ⊗Γ Q; by 4.11, ηZ⊗ΓQ(QZ) = QZ⊗ΓQ; then from 4.13(b), ηF (Z)⊗ΓQ(QF (Z)) =
QF (Z)⊗ΓQ. Then, F (Z) is a realization of F (Z) ⊗Γ Q over Γ , so F (Z) is a realization of 
F (G) over Γ . �
Lemma 4.18. Let A be a layered ditalgebra over a field k. Assume that AX is the lay-
ered ditalgebra obtained from A by reduction, using a complete triangular admissible 
A′-module X, where A′ is a proper subalgebra of A. By [6], (13.5), the associated func-
tor FX : AX-Mod−−→A-Mod is full and faithful. Assume that Z is a realization of 
a pregeneric AX-module G over a principal ideal k-domain Γ , where QG is a skew field. 
Then FX(Z) is a realization of the pregeneric A-module FX(G) over the algebra Γ .

Proof. Here we also have an isomorphism FLAX (Z ⊗Γ −) −−→LA(F (Z) ⊗Γ −), where 
F = FX , and LAX and LA denote canonical embeddings. Then, we can proceed as in 
the precedent proof. �

With a similar argument we can show the following.

Lemma 4.19. Let A and B be k-algebras, and F : B-Mod−−→A-Mod a full and faithful 
functor of the form F ∼= Y ⊗B−, where Y is an A-B-bimodule, which is finitely generated 
by the right. Let Z be a realization of a pregeneric B-module G over a principal ideal 
k-domain Γ , where QG is a skew field. Then F (Z) is a realization of the pregeneric 
A-module F (G) over the algebra Γ .
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Remark 4.20. Recall that given a seminested ditalgebra A, over an algebraically closed 
field, there are some basic types of ditalgebra operations A 	→ Az, where z ∈ {a, r, d, e, u}. 
Namely: absorption of a loop A 	→ Aa, as in [6], (23.16); regularization A 	→ Ar, as in 
[6], (23.15); deletion of idempotents A 	→ Ad, as in [6], (23.14); edge reduction A 	→ Ae, 
as in [6], (23.18); and unravelling A 	→ Au, as in [6], (23.23).

Associated to each one of these operations A 	→ Az, there is an associated basic 
reduction functor F z : Az-Mod−−→A-Mod.

The functors F a, F r, and F d are full and faithful, by [6], (8.20), [6], (8.19), and 
[6], (8.17), respectively. The functors F e and Fu are full and faithful because they are 
of type FX , where X is a complete admissible module, by [6], (17.12). Then, we can 
derive from the preceding Lemmas 4.18 and 4.17 that any composition of functors of 
these types preserves realizations of pregeneric modules G such QG is a skew field.

Corrigendum 4.21. There are some inaccuracies in [5] which need to be pointed out 
and corrected. The problem arises in [5], (2.9), which is an incorrect statement, see 
Example 4.22. This can be replaced by Lemma 4.11, which provides a precise statement 
which can be particularized to the context of [5]: that is the case of an algebraically 
closed field k, a tame seminested ditalgebra A, and a pregeneric A-module of the form 
G = Z ⊗Γ k(x), where Γ is a rational k-algebra. Recall that in this case, EG/ radEG

∼=
k(x), according to [5], (2.7). The other numbered statements of [5] are correct, but we 
need to make some adjustments to some of their proofs. Namely:

1. In the proof of [5], (2.10)(i), we need to use that any composition of basic reduction 
functors preserves realizations: 4.20.

2. The proposition [5], (2.11) can be improved to our Lemma 4.15, with the same proof 
using 4.14, as we mentioned above.

3. In the proof of [5], (3.4) we have to replace the first use of [5], (2.9) by the use of 
4.16, and the second use of [5], (2.9) by the use of 4.18.

Thus, with the only exception of [5], (2.9), we are free to use the results stated in [5].

The following example shows that in the definition of realization of a generic module, 
the requirement endol(G) = dimQ(Z ⊗Γ Q) does not follow from the fact that G ∼=
Z ⊗Γ Q.

Example 4.22. Consider the Kronecker k-algebra Λ, that is the path k-algebra of 
the quiver · −−−−−−→−−−−−−→ · and a natural number n ≥ 2. Consider the rational algebra 
Γ = k[xn] ⊆ k[x] and its field of fractions Q = k(xn) ⊆ k(x). Then, consider the 
Λ-Γ -bimodule Z corresponding to the representation

k[x]
x−−−−−−→−−−−−−→ k[x],

1
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where Γ acts on k[x] through the inclusion map. Since k[x] =
⊕n−1

i=0 xiΓ and k(x) =⊕n−1
i=0 xiQ, the product map k[x] ⊗Γ Q −−→ k(x) is an isomorphism of k[x]-modules. 

Thus, the Λ-module G = Z ⊗Γ Q corresponds to the representation

k(x)
x−−−−−−→−−−−−−→
1

k(x).

Thus, G is a generic Λ-module with endol(G) = 2, while dimQ(Z ⊗Γ Q) = 2n.

5. Restrictions and endolength

In this section we prove Theorem 5.4, which plays an essential role in the proof of our 
main result. For this, we need an improved version of 4.15, namely Lemma 5.2.

Definition 5.1. We say that a seminested ditalgebra A0, over an algebraically closed 
field k, is biconstructible iff there is an admissible ditalgebra A, which is constructible 
from a finite-dimensional algebra Λ, and a finite sequence of reductions

A 	−→ Ax1 	−→ Ax1x2 	−→ · · · 	−→ Ax1···xs = A0,

for some finite set of ditalgebra operations Ax1···xj−1 	−→ Ax1···xj of either of the types: 
absorption of a loop, regularization, deletion of idempotents, edge reduction, and unrav-
elling. In this case, we say that A0 is biconstructible from Λ, through A.

From [4], (3.4), the ditalgebra A is seminested.

Lemma 5.2. Let A0 be a seminested ditalgebra, which is biconstructible from a tame 
finite-dimensional algebra, over an algebraically closed field k. Let Z1 and Z2 be realiza-
tions of some pregeneric A0-modules G1 and G2, over some rational algebras Γ1 and Γ2, 
respectively. If there is an infinite subset P of Irred(Γ2) such that, for all p ∈ P , we have

Z2 ⊗Γ2 Γ2/
(
pip

) ∼= Z1 ⊗Γ1 Γ1/(qp) in A0-Mod,

for some qp ∈ Γ1 and ip ∈ N, then G2 ∼= G1.

Proof. Assume that the ditalgebra A0 is biconstructible from a tame algebra Λ, through 
the admissible ditalgebra A. Adopt the notation of 2.3 and 5.1.

Consider an isomorphism of layered ditalgebras ξ : Dz1···zt −−→A and the cor-
responding restriction functor Fξ : A-Mod−−→Dz1···zt-Mod. For i ∈ [1, t], con-
sider the functor Fi : Dz1···zi-Mod−−→Dz1···zi−1-Mod associated to the correspond-
ing reduction Dz1···zi−1 	−→ Dz1···zi . For j ∈ [1, s], consider the functor Hj :
Ax1···xj -Mod−−→Ax1···xj−1 -Mod associated to the corresponding operation Ax1···xj−1 	−→
Ax1···xj . Then, the composition

F := F1F2 · · ·FtFξH1H2 · · ·Hs : A0-Mod−−→D-Mod
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is a full and faithful functor which preserves pregeneric modules, by [4], (2.5)–(2.6) 
and 4.7(1). From [6], (22.7), there is a D-A0-bimodule Z, finitely generated as a right 
A0-module, such that F (M) ∼= Z ⊗A0 M , for M ∈ A0-Mod. Hence, F (Gi) ∼= Z ⊗A0

Zi ⊗Γi
k(x), and Z ⊗A0 Zi is a realization of the pregeneric D-module F (Gi) over the 

rational algebra Γi, for i ∈ [1, 2], see 4.18 and 4.17. Moreover,

Z ⊗A0 Z2 ⊗Γ2 Γ2/
(
pip

) ∼= F
(
Z2 ⊗Γ2 Γ2/

(
pip

))
∼= F

(
Z1 ⊗Γ1 Γ1/(qp)

)
∼= Z ⊗A0 Z1 ⊗Γ1 Γ1/(qp).

Then, from 4.15, we obtain that F (G1) ∼= F (G2). Since F is full and faithful, we also 
get G1 ∼= G2, as claimed. �
Proposition 5.3. Assume that A′

0 is an initial subditalgebra of a seminested ditalgebra A0, 
which is biconstructible from a tame algebra Λ, over an algebraically closed field k. 
Consider the extension functor E0 : A′

0-Mod−−→A0-Mod and the restriction functor 
R0 : A0-Mod−−→A′

0-Mod. Assume furthermore that E0(M) ∼= E0(N) in A0-Mod
whenever M ∼= N in A′

0-Mod. Then, for any d ∈ N, there is a finite family I(d) of 
finite-dimensional indecomposable A′

0-modules such that:

1. For any indecomposable A0-module M with dimk M ≤ d and M � E0(N) in 
A0-Mod, for any N ∈ A′

0-Mod, the module R0(M) is isomorphic in A′
0-Mod to 

a direct sum of modules in I(d);
2. For any pregeneric A0-module G with endol(G) ≤ d and G � E0(H) in A0-Mod, 

for any pregeneric A′
0-module H, the module R0(G) is isomorphic in A′

0-Mod to a 
direct sum of modules in I(d).

Proof. Essentially the same argument given in the proof of [5], (3.4) works here, but we 
have to be careful because Λ may be non-basic. We give the details.

By assumption, A0 is biconstructible from a tame algebra Λ, through an admissible 
ditalgebra A. Since A is constructible from a tame algebra, it is pregenerically tame, 
see [4], (4.6). We claim that A0 is tame. Indeed, if this was not the case, by Drozd’s 
Theorem, the ditalgebra A0 is wild, see [6], (27.10). From [6], (22.8) and [6], (22.10), we 
obtain that A is wild. Hence, from [4], (2.9), we would have that A is not pregenerically 
tame, which is not the case. Thus, A0 is indeed tame. It follows that A′

0 is also tame, 
see [6], (22.13).

Fix d ∈ N and apply [3], (4.1) to A0 and A′
0, to obtain a finite set I(d) := {X1, . . . , Xt}

of pairwise non-isomorphic finite-dimensional indecomposable A′
0-modules satisfying the 

first item.
In order to prove the second item, take a pregeneric A0-module G such that 

endol(G) ≤ d and G � E0(H), for any pregeneric A′
0-module H.
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From [5], (2.10), there is a realization Z of G over a rational algebra Γ , which is 
free finitely generated as a right Γ -module. It defines the infinite family of pairwise 
non-isomorphic indecomposable A0-modules

{
Z ⊗Γ Γ/(p)

∣∣ p ∈ Irred(Γ )
}
.

If rk(Z) denotes the rank of Z as a free right Γ -module, then rk(Z) = dimk(x)(Z ⊗Γ

k(x)) = endol(G) ≤ d and, for each p ∈ Irred(Γ ), we have that

dimk Z ⊗Γ Γ/(p) ≤ d.

Then, for any p ∈ Irred(Γ ) with Z⊗Γ Γ/(p) � E0(N) in A0-Mod, for any N ∈ A′
0-Mod, 

the module R0(Z⊗Γ Γ/(p)) is isomorphic in A′
0-Mod to a direct sum of modules in I(d). 

Since A′
0 is a Roiter ditalgebra and k is algebraically closed, from [5], (3.3), we have 

the admissible A′
0-module X :=

⊕t
i=1 Xi, the admissible seminested ditalgebra AX

0 , see 
[4], (3.4), and the associated reduction functor FX : AX

0 -Mod−−→A0-Mod. The functor 
FX is full and faithful by [6], (13.3) and [6], (13.5). Let us first prove the following.

Claim. There is no infinite subset P of Irred(Γ ) such that, for all p ∈ P , there is 
Np ∈ A′

0-Mod with Z ⊗Γ Γ/(p) ∼= E0(Np).

Proof of Claim. Assume that there is such a set P . Then, the seminested tame di-
talgebra A′

0 admits the infinite family {Np}p∈P of pairwise non-isomorphic indecom-
posable A′

0-modules with dimk Np ≤ d. Then, from [5], (2.10), there are a pregeneric 
A′

0-module G′, a realization Z ′ of G′ over a rational algebra Γ ′, and an infinite subset 
Q of Irred(Γ ′) such that, for any q ∈ Q, there are pq ∈ P and iq ∈ N with

Z ′ ⊗Γ ′ Γ ′/
(
qiq

) ∼= Npq
in A′

0-Mod.

Then, for all q ∈ Q, we have

Z ⊗Γ Γ/(pq) ∼= E0(Npq
) ∼= E0

(
Z ′ ⊗Γ ′ Γ ′/

(
qiq

)) ∼= E0
(
Z ′)⊗Γ ′ Γ ′/

(
qiq

)
.

Moreover, E0(G′) ∼= E0(Z ′⊗Γ ′ k(x)) ∼= E0(Z ′) ⊗Γ ′ k(x). From 4.16, we have that E0(G′)
is a pregeneric A0-module with realization E0(Z ′) over Γ ′. Then, from 5.2, we obtain that 
E0(G′) ∼= G, contradicting our initial assumption. This ends the proof of our Claim. �

Then, there are infinitely many elements p ∈ Irred(Γ ) such that

Z ⊗Γ Γ/(p) � E0(N), for any N ∈ A′
0-Mod.

Hence, there is an infinite subset P ⊆ Irred(Γ ) such that, for any p ∈ P , the module 
R0(Z ⊗Γ Γ/(p)) is isomorphic in A′

0-Mod to a direct sum of direct summands of X.
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From [5], (3.3), we know that, for each p ∈ P , there is an AX
0 -module Lp such that 

Z ⊗Γ Γ/(p) ∼= FX(Lp).
The admissible seminested tame ditalgebra AX

0 admits the infinite family {Lp}p∈P of 
pairwise non-isomorphic indecomposable AX

0 -modules with bounded dimension. From 
[5], (2.10), there are a pregeneric AX

0 -module G′, a realization Z ′ of G′, over some 
rational algebra Γ ′, and an infinite subset Q of Irred(Γ ′) such that, for any q ∈ Q, there 
are pq ∈ P and iq ∈ N with

Z ′ ⊗Γ ′ Γ ′/
(
qiq

) ∼= Lpq
in AX

0 -Mod.

Thus, for q ∈ Q, we have

Z ⊗Γ Γ/(pq) ∼= FX(Lpq
) ∼= FX

(
Z ′ ⊗Γ ′ Γ ′/

(
qiq

)) ∼= FX
(
Z ′)⊗Γ ′ Γ ′/

(
qiq

)
.

Moreover, FX(G′) ∼= FX(Z ′ ⊗Γ ′ k(x)) ∼= FX(Z ′) ⊗Γ ′ k(x). From 4.18 and [5], (2.5), 
we obtain that FX(G′) is a pregeneric A0-module and FX(Z ′) is a realization of FX(G′)
over Γ ′.

Then, from 5.2, we obtain that FX(G′) ∼= G. Hence, from [5], (3.3), the module R0(G)
is a direct sum of direct summands of X in A′

0-Mod. �
Theorem 5.4. Assume that A′ is an initial subditalgebra of an almost admissible dital-
gebra A, which is constructible from a tame finite-dimensional algebra Λ, over an alge-
braically closed field k. Consider the extension functor E = EA

A′ : A′-Mod−−→A-Mod
and the restriction functor R = RA

A′ : A-Mod−−→A′-Mod. Then, for any d ∈ N, there 
is a finite family I(d) of finite-dimensional indecomposable A′-modules such that:

1. For any indecomposable A-module M with dimk M ≤ d and M � EA
A′(N) in A-Mod, 

for any N ∈ A′-Mod, the module RA
A′(M) is isomorphic in A′-Mod to a direct sum 

of modules in I(d).
2. For any pregeneric A-module G with endol(G) ≤ d and G � EA

A′(H) in A-Mod, 
for any pregeneric A′-module H, the module RA

A′(G) is isomorphic in A′-Mod to a 
direct sum of modules in I(d).

Proof. We first notice that, in order to prove the statement of our theorem, we can 
assume that A is admissible. Indeed, if A is not admissible, we can consider the si-
multaneous basifications A′b of A′ and Ab of A, as in [4], (3.3). Thus, A′b is an initial 
subditalgebra of the admissible ditalgebra Ab which is constructible from the finite-
dimensional algebra Λ. Moreover, we have the commutative diagram

Ab-Mod F b

−−→ A-Mod

Rb

⏐⏐⏐⏐

⏐⏐⏐⏐
R

′b F ′b ′
A -Mod −−→ A -Mod
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where Rb, R denote restriction functors, and F b, F ′b denote the corresponding equiv-
alence functors. Moreover, F bEb(N) = EF ′b(N), for any N ∈ A′b-Mod, where Eb :
A′b-Mod−−→Ab-Mod and E : A′-Mod−−→A-Mod are the corresponding extension func-
tors.

Then, if our theorem holds for the ditalgebras A′b and Ab, for each d ∈ N, there 
is a finite family Ib(d) of finite-dimensional indecomposable A′b-modules satisfying the 
statements corresponding to (1) and (2). Then, it is easy to show that I(d) := F ′b(Ib(d))
satisfies (1) and (2), using [4], (3.3).

From now on, we assume that A is admissible.
Then, A is seminested, by [4], (3.4). Since A is constructible from a tame algebra, it is 

pregenerically tame, see [4], (4.6). From [5], (2.8), A is tame. Now, given a d ∈ N, we can 
proceed as in the proof of [3], (4.1), where [6], (28.22) is used to construct a commutative 
diagram of functors

A0-Mod F−−→ A-Mod

R0

⏐⏐⏐⏐

⏐⏐⏐⏐
R

A′
0-Mod F ′

−−→ A′-Mod

where: A′
0 is a minimal initial subditalgebra of the seminested ditalgebra A0; the functors 

R and R0 denote the corresponding restrictions; the functors F and F ′ are compositions 
of basic reduction functors, and hence are full and faithful, and map finite-dimensional 
modules onto finite-dimensional modules. Moreover, FE0(N ′

0) = EF ′(N ′
0), for any 

N ′
0 ∈ A′

0-Mod, where E0 : A′
0-Mod−−→A0-Mod and E : A′-Mod−−→A-Mod are the 

corresponding extension functors. Furthermore,

(a) we have dimk N0 ≤ dimk F (N0), for any N0 ∈ A0-Mod;
(b) for any M ∈ A-Mod with dimk M ≤ d there are N ′

0 ∈ A′
0-Mod with F ′(N ′

0) ∼= R(M)
and N0 ∈ A0-Mod with F (N0) ∼= M and R0(N0) ∼= N ′

0.

Notice that, since A′
0 is a minimal ditalgebra, the canonical embedding functor LA′

0
:

A′
0-Mod−−→A′

0-Mod preserves isomorphism classes. Then, if M ∼= N in A′
0-Mod, we 

have that M ∼= N in A′
0-Mod; thus, E0(M) ∼= E0(N) in A0-Mod and we get E0(M) ∼=

E0(N) in A0-Mod. Moreover, the seminested ditalgebra A0 is biconstructible and, from 
5.3, we have a finite family I0(d) = {X1, . . . , Xt} of finite-dimensional indecomposable 
A′

0-modules satisfying for R0 and E0 the statements corresponding to (1) and (2).
Then, we can consider the finite set I(d) := F ′(I0(d)) consisting of finite-dimensional 

indecomposable A′-modules. The argument in the last paragraph of the proof of [3], (4.1), 
using (a) and (b), shows that I(d) satisfies (1). In order to prove (2), we need:

(a’) we have endol(N0) ≤ endol(F (N0)), for any N0 ∈ A0-Mod;
(b’) for any M ∈ A-Mod with endol(M) ≤ d there are N ′

0 ∈ A′
0-Mod with F ′(N ′

0) ∼=
R(M) and N0 ∈ A0-Mod with F (N0) ∼= M and R0(N0) ∼= N ′

0.
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The statement (a’) follows, for instance, from [4], (2.5)–(2.6) and 4.5(1). Let us prove 
(b’). Notice that endol(R(M)) ≤ endol(M) ≤ d, by [4], (2.2). By construction, for any 
k-algebra Γ , the functor F ′Γ : A′

0-Γ -Mod−−→A′-Γ -Mod is such that any A′-Γ -bimodule 
N ′ ∈ A′-Γ -Mod with �Γ (N ′) ≤ d is of the form N ′ ∼= F ′Γ (N ′

0), for some N ′
0 ∈ A′

0-Γ -Mod, 
see [6], (28.22). If we make Γ := EndA′(R(M))op, then �Γ (R(M)) = endol(R(M)) ≤ d, 
and R(M) ∼= F ′Γ (N ′

0), for some N ′
0 ∈ A′

0-Γ -Mod. Then, from [3], (4.5), there is N0 ∈
A0-Mod with F (N0) ∼= M and R0(N0) ∼= N ′

0.
Now we show that item (2) follows from (a’) and (b’). Take a pregeneric M ∈ A-Mod

with endol(M) ≤ d and such that M � E(M ′), for any pregeneric M ′ ∈ A′-Mod. 
Choose N0 and N ′

0 as in (b’). From (a’), using that N0 is infinite-dimensional and 
indecomposable because M is so, we obtain that N0 is a pregeneric A0-module with 
endol(N0) ≤ d. Assume that N0 ∼= E0(N ′′

0 ), for some pregeneric A′
0-module N ′′

0 . Then, 
M ∼= F (N0) ∼= FE0(N ′′

0 ) = EF ′(N ′′
0 ). Since N ′′

0 is pregeneric, the module F ′(N ′′
0 ) is pre-

generic too, see for instance [4], (2.5)–(2.6) and 4.7(1). This contradicts our assumption 
on M . Thus, endol(N0) ≤ d and N0 � E0(N ′′

0 ), for any pregeneric A′
0-module N ′′

0 . Then, 
R0(N0) ∼=

⊕
i

⊕
Ji
Xi, for some index sets Ji. Then, R(M) ∼= RF (N0) = F ′R0(N0) ∼=⊕

i

⊕
Ji
F ′(Xi) and we are done. �

6. Finite endolength and decompositions

Given a finite-dimensional algebra Λ, many important properties of Λ-modules with 
finite endolength can be transfered to the category of modules of the constructible di-
talgebras from Λ. We discuss some of them in the following.

Proposition 6.1. Let A be an almost admissible constructible ditalgebra over the perfect 
field k and take M ∈ A-Mod. Then,

1. If M has finite endolength, it admits a decomposition of the form M ∼=
⊕t

i=1
⊕

Ii
Mi, 

for some finite sequence M1, . . . , Mt of indecomposable A-modules with finite en-
dolength.

2. If M ∼=
⊕t

i=1
⊕

Ii
Mi, for some finite sequence M1, . . . , Mt of indecomposable 

A-modules with finite endolength, then M has finite endolength.
3. If M ∼=

⊕
i∈I Mi in A-Mod and a pregeneric A-module G is a direct summand of M , 

then G is a direct summand of Mi, for some i ∈ I.

Proof. Given a finite-dimensional algebra Λ, consider the triangular matrix algebra Λ̃ :=(
Λ 0
Λ Λ

)
. Then, from [6], (18.2), there is an equivalence of categories Ψ : Λ̃-Mod−−→M(Λ), 

where M(Λ) denotes the category of morphisms of Λ-Mod. This equivalence maps each 
Λ̃-module M onto the triple (M1, M2, φ), where M1 = e1M , M2 = e2M and φ : M1 ∼=
Λ ⊗Λ M1 −−→M2 is determined by the action of Λ̃ on M . Here, e1 and e2 denote the 
canonical idempotents of Λ̃. From [10], (4.5), each Λ̃-module L with finite endolength 
admits a decomposition of the form L ∼=

⊕t
i=1

⊕
I Li, for some finite sequence L1, . . . , Lt

i
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of indecomposable Λ̃-modules with finite endolength. We can transfer this property to the 
category M(Λ), with the help of the functor Ψ . Namely, given Z = (M1, M2, φ) ∈ M(Λ), 
we can consider the algebra EZ := EndM(Λ)(Z)op, which acts naturally on M1 and 
on M2, hence on M1⊕M2. Let us denote by eZ the length of M1⊕M2 as an EZ-module. 
Notice that, for any M ∈ Λ̃-Mod, we have endol(M) = eΨ(M). It is natural to call eZ
the endolength of Z, for Z ∈ M(Λ). Then, we know that any Z ∈ M(Λ) with finite 
endolength admits a decomposition of the form Z ∼=

⊕t
i=1

⊕
Ii
Zi, for some t ∈ N where 

each Zi is an indecomposable of M(Λ) with finite endolength. Now, the category P1(Λ)
is a full subcategory of M(Λ) closed under the formation of direct summands. Thus, 
P1(Λ) inherits the preceding property.

Now, consider the usual equivalence ΞΛ : D-Mod−−→P1(Λ), where D is Drozd’s
ditalgebra of Λ. We claim that, for any N ∈ D-Mod, the following holds:

endol(N) ≤ eΞΛ(N) ≤ dimk Λ× endol(N).

Indeed, make X := ΞΛ(N) = (P1, P2, φ) in P1(Λ) and E := EndP(Λ)(X)op. Then, 
we can consider N as a right E-module by restriction, through the isomorphism 
E−−→ EndD(N)op given by the quasi inverse of the functor ΞΛ. Thus, from [6], (21.10), 
we have endol(N) = �E(N) = �E(P1/JP1) + �E(P2/JP2) ≤ �E(P1) + �E(P2) =
�E(P1 ⊕P2) = eΞΛ(N), where J denotes the radical of Λ. Moreover, the argument in the 
proof of [6], (29.5) shows that �E(Pi) ≤ dimk Λ ×�E(Pi/JPi), for i ∈ [1, 2]. Then, we have 
eΞΛ(N) = �E(P1) +�E(P2) ≤ dimk Λ × [�E(P1/JP1) +�E(P2/JP2)] = dimk Λ ×endol(N), 
and the claim is proved.

Now, we can transfer the preceding property from P1(Λ) to the category D-Mod, 
obtaining the statement (1) of our proposition for the case A = D.

Finally, consider the almost admissible constructible ditalgebra A as in 2.3. Then, 
there is a full and faithful functor F : A-Mod−−→D-Mod. Take any M ∈ A-Mod
with finite endolength. Then, from [4], (2.5)–(2.6) and 4.7(1), we know that F (M) has 
finite endolength. It follows that F (M) ∼=

⊕t
i=1

⊕
Ii
Ni, where each Ni is an inde-

composable D-module with finite endolength. From [6], (29.4), for each Ni there is a 
direct summand Mi of M with F (Mi) ∼= Ni. Since F preserves direct sums, we obtain 
F (

⊕t
i=1

⊕
Ii
Mi) ∼=

⊕t
i=1

⊕
Ii
F (Mi) ∼= F (M). Therefore, M ∼=

⊕t
i=1

⊕
Ii
Mi. From 

[4], (2.5)–(2.6) and 4.6(1), we know that each Mi has finite endolength and we have 
proved (1).

The proof of (2) follows the same strategy used to prove (1), keeping in mind also 
[4], (2.7). For (3), we proceed similarly, now using [16], (2.2). �
Lemma 6.2. Let A be a layered ditalgebra. Then,

1. If M and N are A-modules, we have

max
{
endol(M), endol(N)

}
≤ endol

(
M ⊕N

)
≤ endol(M) + endol(N).
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2. If M is an A-module, for any set of indexes I, we have

endol(M) = endol
(⊕

I

M

)
.

Proof. The proof given by Crawley-Boevey in [9] for modules over an algebra can be 
adapted to this case. We give the details.

We can identify EndA(M ⊕N) with the matrix algebra

(
EndA(M) HomA(N,M)

HomA(M,N) EndA(N)

)

and consider the canonical morphism of algebras

Γ := EndA(M) × EndA(N) ψ−−→ EndA(M ⊕N)

which maps (f, g) onto the diagonal matrix determined by f and g. Then, by restriction 
through the morphism ψ, the space M ⊕N has a natural structure of a Γ -module.

(1): For the second inequality in (1), we can assume that endol(M) = s and 
endol(N) = t are finite. Consider a composition series 0 = Ms ⊆ · · · ⊆ M1 ⊆ M0 = M

of the EndA(M)-module M and a composition series 0 = Nt ⊆ · · · ⊆ N1 ⊆ N0 = N of 
the EndA(N)-module N . Then, the filtration

0 = Ms ⊆ · · · ⊆ M1 ⊆ M ⊆ M ⊕Nt−1 ⊆ · · · ⊆ M ⊕N1 ⊆ M ⊕N0 = M ⊕N

is a composition series of length s +t of the Γ -module M⊕N (since each simple Γ -module 
is either a simple EndA(M)-module or a simple EndA(N)-module). Then, we have that 
�Γ (M ⊕N) = endol(M) +endol(N). Moreover, each chain of EndA(M ⊕N)-submodules 
of M ⊕ N is a chain of Γ -submodules of M ⊕ N , by restriction through ψ. Then, 
endol(M ⊕N) ≤ �Γ (M ⊕N) = endol(M) + endol(N).

For the proof of the first inequality in (1), we need the following.

Claim. For any EndA(M)-submodule X of M , the EndA(M ⊕ N)-submodule 〈X〉 of 
M ⊕N generated by X satisfies that X = 〈X〉 ∩M .

Indeed, every element of 〈X〉 is a finite sum of the form

∑
i

(
f0
i ζ0

i

θ0
i g0

i

)(
xi

0

)
=

(∑
i f

0
i (xi)∑

i θ
0
i (xi)

)
,

where the square matrices are first components of matrices in the matrix algebra de-
scribed above and xi ∈ X. It follows that we have a vector space decomposition 
〈X〉 = X ⊕ Z, where Z =

∑
θ∈Hom (M,N) θ

0(X). Hence, X = 〈X〉 ∩ M as claimed. 

A
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Now, assume that the EndA(M ⊕N)-module M ⊕N admits a composition series of fi-
nite length �. Any chain of EndA(M)-submodules · · · ⊆ Xj ⊆ · · · ⊆ X1 ⊆ M determines 
the chain · · · ⊆ 〈Xj〉 ⊆ · · · ⊆ 〈X1〉 ⊆ 〈M〉 ⊆ M ⊕ N of EndA(M ⊕ N)-submodules of 
M⊕N . Thus, this last chain must stabilize and refine to a composition series of length �. 
From Claim, the chain · · · ⊆ Xj ⊆ · · · ⊆ X1 ⊆ M stabilizes and refines to a composition 
series of length ≤ �.

(2): Any composition series 0 = Mn ⊆ · · · ⊆ Mj ⊆ Mj−1 ⊆ · · · ⊆ M0 = M of the 
EndA(M)-module M determines the composition series 0 =

⊕
I Mn ⊆ · · · ⊆

⊕
I Mj ⊆⊕

I Mj−1 ⊆ · · · ⊆
⊕

I M0 =
⊕

I M of the EndA(
⊕

I M)-module 
⊕

I M . Thus (2) 
holds. �
7. Restrictions over real closed fields

Remark 7.1. Denote by K the algebraic closure of the field k and by [K : k] the degree 
of this extension. Recall that, by Artin–Schreier Theorem, the field k is real closed if 
and only if 1 < [K : k] < ∞. In this case, k is perfect (in fact, with zero characteristic 
and K = k(

√
−1), thus [K : k] = 2), see [14], §11.7, (11.14) and [14], §11.1, (11.3). For 

example, the field R of real numbers is real closed.

Theorem 7.2. Suppose that B is an initial subalgebra of an admissible ditalgebra A, 
over a real closed field k. Assume that A is constructible from a generically tame finite-
dimensional basic algebra Λ. Consider the extension functor E : B-Mod−−→A-Mod and 
the restriction functor R : A-Mod−−→B-Mod. Then, for any d ∈ N, there is a finite 
family I(d) of finite-dimensional indecomposable B-modules such that:

1. For any indecomposable A-module M with dimk M ≤ d and M � E(N) in A-Mod, 
for any N ∈ B-Mod, the module R(M) is isomorphic in B-Mod to a direct sum of 
modules in I(d).

2. For any pregeneric A-module M with endol(M) ≤ d and M � E(N) in A-Mod, for 
any pregeneric N ∈ B-Mod, the module R(M) is isomorphic in B-Mod to a direct 
sum of modules in I(d).

Proof. Consider the algebraic closure K of the ground field k. Then, we have the com-
mutative squares

A-Mod (−)K−−→ AK-Mod

R

⏐⏐⏐⏐

⏐⏐⏐⏐
R

B-Mod (−)K−−→ BK-Mod

and

A-Mod (−)K−−→ AK-Mod

E

�⏐⏐⏐⏐
�⏐⏐⏐⏐ E

B-Mod (−)K−−→ BK-Mod,

where E and E denote extension functors and R and R denote restriction functors, see [6], 
(20.3) and 4.2. Since k is perfect, by 2.4, the K-ditalgebra AK is almost admissible and 
constructible from ΛK . From [4], (4.7), it is also pregenerically tame.
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Fix d ∈ N and make d := 2d. Then, from 5.4, we know that there is a finite family 
I(d) of finite-dimensional indecomposable BK-modules such that:

1. For any indecomposable AK-module M with dimK M ≤ d and such that M � E(N), 
for any N ∈ BK-Mod, we have that R(M) is isomorphic in BK-Mod to a direct sum 
of modules in I(d).

2. For any pregeneric AK-module M with endol(M) ≤ d and such that M � E(N), 
for any pregeneric N ∈ BK-Mod, we have that R(M) is isomorphic in BK-Mod to a 
direct sum of modules in I(d).

Make I(d) = {X1, . . . , Xm} and consider a finite set of representatives I(d) of the 
isomorphism classes of the (necessarily finite-dimensional) indecomposable direct sum-
mands of their scalar restrictions Fξ(X1), . . . , Fξ(Xm) in B-Mod.

We will see first that I(d) works for the second item of our theorem. Take M ∈ A-Mod
pregeneric with endol(M) ≤ d and such that M � E(N), for any pregeneric B-module N .

From 3.5, the module MK has finite endolength ≤ d. Hence, from 6.1, it admits a 
decomposition MK ∼=

⊕t
i=1

⊕
Ii
M i in AK-Mod as a direct sum of indecomposable 

AK-modules M i with finite endolength. From 3.8, none of them is finite-dimensional. 
Thus, every M i is a pregeneric AK-module. Moreover, from 6.2, each M i has endolength 
≤ d.

Assume that, for some i ∈ [1, t], we have M i
∼= E(N i) in AK-Mod, for some pregeneric 

BK-module N i. From 3.6 and [4], (2.4), we have

endol
(
Fξ(N i)

)
≤ endol(N i) = endol

(
E(N i)

)
= endol(M i) ≤ d.

Since B-Mod is canonically identified with B-Mod, from [10], (4.5), we have a decompo-
sition Fξ(N i) ∼=

⊕si
j=1

⊕
Jij

Nij as a direct sum of indecomposable B-modules Nij with 
finite endolength. Again, BK-Mod is identified with BK -Mod. Then, from [16], (4.1), 
the BK-module N i is a direct summand of Fξ(N i)K ∼=

⊕si
j=1

⊕
Jij

NK
ij . This implies, by 

[16], (2.2), that the pregeneric module N i is a direct summand of some NK
ij . But, then, 

E(N i) ∼= M i is a direct summand of E(NK
ij ) ∼= E(Nij)K . From 3.4, we obtain that M

is a direct summand of E(Nij), which is indecomposable, thus M ∼= E(Nij). But this 
contradicts our assumption on M , because Nij is a pregeneric B-module.

Then, M i � E(N i), for any pregeneric BK-module N i, for all i ∈ [1, t]. Hence, R(M i)
is isomorphic in BK-Mod to a direct sum of modules in I(d). Hence, the same holds for 
R(MK). Thus, we obtain that R(M)K ∼= R(MK) ∼=

⊕m
r=1

⊕
Tr

Xr in BK-Mod, for some 
index sets T1, . . . , Tm. Then, applying the scalar restriction functor Fξ and keeping in 
mind 3.1, we obtain

∐
R(M) ∼= Fξ

(
R(M)K

) ∼= m⊕⊕
Fξ(Xr).
B r=1 Tr
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Then, the module R(M) is a direct summand of a direct sum of the finite-dimensional 
indecomposable B-modules in I(d). Then, from Warfield’s Theorem, the module R(M)
is in fact a direct sum of some of these indecomposables, see [1], (26.6). This is what we 
wanted to prove for item 2.

In order to prove item 1, assume that M ∈ A-Mod is indecomposable with dimk M ≤ d

and such that M � E(N), for any N ∈ B-Mod. Here again, we can show that R(MK)
is a direct sum of modules in I(d) (the argument is similar to the previous one, see the 
proof of [4], (5.2)). Then, we proceed as before (where the index sets Tr are now finite 
of course). �
8. Reduction functors and norms

We shall need the following norm, first introduced in [7], for an induction argument 
in the proof of Theorem 10.4.

Definition 8.1. Let A be an admissible k-ditalgebra with layer (R, W ) and adopt the 
notation of 2.2. Fix any k-algebra E. Consider the decomposition 1 =

∑n
i=1 ei of the 

unit of R = D1 × · · · ×Dn as a sum of central primitive orthogonal idempotents. Then, 
for M ∈ A-E-Mod, we have its norm ‖M‖ given by

‖M‖ =
∑
i,j

dimk(eiW0ej)
dimk Di dimk Dj

�(Mi)�(Mj),

where � denotes the length of the corresponding right E-module Mi := eiM . The length 
vector of M is �(M) = (�(M1), . . . , �(Mn)). The support suppM of an A-module M is 
the set of indices i ∈ [1, n] with Mi �= 0. The A-module is sincere iff suppM = [1, n].

Proposition 8.2. Let A be an admissible ditalgebra with layer (R, W ), over a perfect 
field k. Assume that AX is the admissible ditalgebra obtained from A by reduction, using 
the B-module X, where B is an initial subalgebra of A and X is a finite direct sum 
of pairwise non-isomorphic finite-dimensional indecomposable B-modules. Consider the 
associated functor FX : AX-Mod−−→A-Mod. Given a fixed k-algebra E, consider the 
induced functor FE

X : AX-E-Mod−−→A-E-Mod. Then, for all N ∈ AX-E-Mod, we 
have that ‖N‖ ≤ ‖FE

X (N)‖ and the inequality is strict, whenever FX(N) is a sincere 
A-module and W ′

0 �= 0.

Proof. By assumption, A has layer (R, W ), where R = D1 × · · · × Dn. Consider the 
corresponding decomposition 1 =

∑n
i=1 ei of the unit of R as a sum of central primitive 

orthogonal idempotents. By assumption, B = (T ′, δ′) is a proper subalgebra associ-
ated, say to the R-R-bimodule decomposition W0 = W ′

0 ⊕W ′′
0 , with δ(W ′

0) = 0. Make 
B = [T ′]0 ∼= TR(W ′

0). We also have the admissible finite-dimensional B-module X, with 
decomposition X = X1⊕· · ·⊕Xt, consisting of pairwise non-isomorphic indecomposable 
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B-modules. Since k is perfect, there is a splitting EndB(X)op = S ⊕ P over the radical 
P of the algebra EndB(X)op. Then, the admissible ditalgebra AX has layer (S, WX). 
Denote by f1, . . . , ft the corresponding central primitive orthogonal idempotents of S. 
Recall that WX

0 = X∗⊗BBW ′′
0 B⊗BX ∼= X∗⊗RW ′′

0 ⊗RX, see [6], (12.2) and [6], (12.7).
For j ∈ [1, t], write Sj := Sfj and also, for N ∈ AX -Mod, write Nj := fjN . Similarly, 

write Mi := eiM , for M ∈ A-Mod and i ∈ [1, n].
Given N ∈ AX -E-Mod, we have M := FE

X (N) ∈ A-E-Mod, and by 4.4, for i ∈ [1, n], 
we obtain the formula

�(Mi) =
t∑

s=1
dimSs

(eiXfs)�(Ns).

Here � denotes the length of the corresponding right E-module Mi or Ns. Notice 
also that dimSs

(eiXfs) = dimSs
(fsX∗ei), because fsX∗ei = fs HomS(X, S)ei ∼=

HomS(eiX, Sfs) ∼= HomSs
(eiXfs, Ss). Then, we have

‖M‖ =
∑
i,j

dimk(eiW0ej)
dimk Di dimk Dj

�(Mi)�(Mj)

=
∑
i,j,s

dimk(eiW0ej)
dimk Di dimk Dj

dimSs
(eiXfs)�(Ns)�(Mj)

=
∑
i,j,s

dimk(eiW0ej)
dimk Di dimk Dj

dimSs

(
fsX

∗ei
)
�(Ns)�(Mj)

=
∑
i,j,s

dimk(fsX∗ei)
dimk Ss

dimk(eiW0ej)
dimk Di dimk Dj

�(Ns)�(Mj)

=
∑
i,j,s

dimDi
(fsX∗ei) dimDj

(eiW0ej)
dimk Ss

�(Ns)�(Mj)

=
∑
j,s

dimDj
(fsX∗ ⊗R W0ej)
dimk Ss

�(Ns)�(Mj)

=
∑
j,s,r

dimDj
(fsX∗ ⊗R W0ej)
dimk Ss

�(Ns) dimSr
(ejXfr)�(Nr)

=
∑
s,r

dimSr
(fsX∗ ⊗R W0 ⊗R Xfr)

dimk Ss
�(Ns)�(Nr)

=
∑
s,r

dimk(fsX∗ ⊗R W0 ⊗R Xfr)
dimk Ss dimk Sr

�(Ns)�(Nr)

≥
∑ dimk(fsX∗ ⊗R W ′′

0 ⊗R Xfr)
dimk Ss dimk Sr

�(Ns)�(Nr) = ‖N‖.

s,r
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If M is sincere, then we have M = FE
X (N) = X ⊗S N ∼=

⊕
s Xfs ⊗Ss

fsN =⊕
i,s eiXfs ⊗Ss

fsN . Hence, for any i ∈ [1, n], there is an si ∈ [1, t] with eiXfsi ⊗Ssi

fsiN �= 0. Hence, fsiN �= 0 and eiXfsi �= 0, and also fsiX
∗ei �= 0. But, since W ′

0 �= 0, 
there are i, j ∈ [1, n] with ejW ′

0ei �= 0. It follows that fsjX∗⊗RW
′
0⊗RXfsi �= 0. Then, we 

obtain �(Nsi)�(Nsj ) �= 0 and also [dimk Ssj dimk Ssi ]−1 dimk(fsjX∗⊗RW ′
0⊗RXfsi) �= 0. 

Hence, ‖N‖ < ‖M‖. �
Definition 8.3. Let A be an admissible ditalgebra, with layer (R, W ), and consider the 
decomposition 1 =

∑n
i=1 ei of the unit of R as a sum of central primitive orthogonal 

idempotents ei of R. Given M ∈ A-Mod, make EM := EndA(M)op and define the 
endolength vector of M as

�e(M) =
(
�e1(M), . . . , �en(M)

)
, where �ei (M) := �EM

(eiM), for i ∈ [1, n].

Thus, endol(M) =
∑n

i=1 �
e
i (M). The endonorm of M is defined by

‖M‖e :=
∑
i,j

dimk(eiW0ej)
dimk Di dimk Dj

�ei (M)�ej(M).

For � ∈ Zn, with non-negative entries, its endonorm is defined by

‖�‖e =
∑
i,j

dimk(eiW0ej)
dimk Di dimk Dj

�i�j .

Remark 8.4. We stress the fact that, in general, the endonorm is not an integral number. 
For a fixed admissible ditalgebra A, with the preceding notation, we know that for any 
common multiple c of the set {dimk Di | i ∈ [1, n]}, the number c‖M‖e is a non-negative 
integer, for any M ∈ A-Mod with finite endolength. For the special case of a real closed 
field k, we get that 4‖M‖e is a non-negative integer, for any admissible ditalgebra A
and any M ∈ A-Mod with finite endolength. This will be of importance later because 
we shall make inductions related to the endonorm.

The proof of the following lemma is similar to the proof of [4], (7.2).

Lemma 8.5. Let A be an admissible ditalgebra with layer (R, W ), as in 2.2. Assume that 
W0 �= 0 and that M is a sincere indecomposable A-module with ‖M‖e ≤ d, for some 
number d. Then, endol(M) ≤ ncd, for any common multiple c of the set {dimk Di | i ∈
[1, n]}.

In particular, if k is a real closed field, we get endol(M) ≤ 4n‖M‖e.

We will need the following result, taken from [7].

Corollary 8.6. Let A be an admissible ditalgebra with layer (R, W ), over a perfect field k. 
Let F z : Az-Mod−−→A-Mod be the functor associated to the reduction A 	→ Az of one 
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of the types: deletion of idempotents as in [4], (2.5), regularization as in [4], (2.6), or 
reduction by a B-module as in 8.2. For N ∈ Az-Mod, assume that F z(N) has finite 
endolength, then we have:

1. ‖N‖e = ‖F d(N)‖e in the deletion of idempotents case;
2. ‖N‖e ≤ ‖F r(N)‖e in the regularization case, where the inequality is strict whenever 

F r(N) is sincere and W ′
0 �= 0;

3. ‖N‖e ≤ ‖FX(N)‖e in the reduction by a B-module case, where the inequality is strict 
whenever FX(N) is sincere and W ′

0 �= 0.

Proof. For the third case, we make E := EndAX (N)op and recall that E ∼=
EndA(FX(N))op. Then, notice that N ∈ AX -E-Mod and FE

X (N) ∈ A-E-Mod. Moreover, 
we have �e(N) = �E(N) and �e(FX(N)) = �E(FE

X (N)), then apply 8.2. The first two 
cases are clear. �
9. Families of modules

Recall from [4] the following definition.

Definition 9.1. A k-algebra B is called minimal iff it is of one of the following two types:

1. B = TD1×D2(V ), where D1 and D2 are finite-dimensional division k-algebras and V
is a simple D1-D2-bimodule.

2. B = TD(V ), where D is a finite-dimensional division k-algebra and V is a simple 
D-D-bimodule.

Remark 9.2. From [4], (6.2), if B = TD(V ) is a pregenerically tame minimal algebra 
of type 2 in 9.1, then B is a skew polynomial algebra D[x, s], for some automorphism 
s : D−−→D. It has infinite representation type. Moreover, B admits up to isomorphism, 
a unique pregeneric module (which is the unique generic module).

As remarked in [4], (6.6), from the work of Dlab, Ringel, and Crawley-Boevey, the 
description of generically tame minimal algebras of type 1 in 9.1, which are of infinite 
representation type, is the following. They also admit a unique generic module, up to 
isomorphism.

1. B is the matrix algebra 
(

F 0
M G

)
, where F and G are finite-dimensional division 

k-algebras and M is a simple G-F -bimodule where the field k acts centrally. More-
over, dimG M = 2 = dimMF ; or

2. B is the matrix algebra 
(

F 0
M G

)
, where F and G are finite-dimensional division 

k-algebras and M is a simple G-F -bimodule where the field k acts centrally. More-
over, dimG M = 4 and dimMF = 1, or dimG M = 1 and dimMF = 4.
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Remark 9.3. From now on, we assume that the ground field k is real closed. From 
the Gerstenhaber–Yang Theorem, see [17], (15.10), we know that there are only three 
isoclasses of finite-dimensional division k-algebras. Namely, the field k itself, its algebraic 
closure k(

√
−1 ) and the quaternion algebra over k. For the sake of notational simplicity, 

and since in this paper we only mention the example of the real numbers field, we abuse of 
the language and write k = R, denote by C its algebraic closure and by H the quaternion 
algebra. Likewise, we write i =

√
−1 and consider the R-automorphism τ : C −−→C given 

by a + bi 	→ a − bi, with a, b ∈ R, which we call the conjugation of C. We also have the 
quaternion conjugation (−)∗ : H −−→H given by (a + bi + cj + dk)∗ = a − bi − cj − dk, 
which determines an isomorphism of R-algebras H ∼= Hop.

Then, as a particular case of the general situation of a hereditary prime noetherian 
algebra described in [10], (4.7), we have the following (see also [13]).

Lemma 9.4. If B is a skew polynomial R-algebra, then B is, up to isomorphism, one of 
the following four R-algebras

R[x], C[x], H[x], C[x, τ ]

where τ is the conjugation automorphism of C. Their corresponding skew fields of frac-
tions F(B) are, respectively,

R(x), C(x), H(x), C(x, τ).

Then, in each case, the generic B-module G is the ring of fractions F(B), considered as 
a B-module by restriction through the embedding B−−→F(B), which is an epimorphism 
of algebras. Thus, the endomorphism algebra of the generic B-module G satisfies that 
EndB(G) ∼= F(B)op ∼= F(B).

Lemma 9.5. Given a real-closed field R, the generically tame finite-dimensional minimal 
R-algebras of infinite representation type are 

(
R 0
H H

)
and 

(
H 0
H R

)
.

Proof. This follows from 9.2 and 9.3. More precisely, from the classification of bimodule 
R-algebras of tame representation type due to Dlab and Ringel, see the addendum of 
[11], we know that the representation-infinite tame bimodule R-algebras are isomorphic 
to one the following six ones:(

R 0
R⊕ R R

) (
C 0

C⊕ C C

) (
H 0

H⊕H H

) (
C 0

C⊕ Cτ C

)
(
R 0
H H

) (
H 0
H R

)

From this list we can discard the first line because the bimodules which appear are not 
simple. We remain with the last two possibilities. �
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The formulation of the following lemma is taken from [13], see also the note added in 
proof of [12].

Lemma 9.6. Consider the principal ideal domain D := R[x, y]/〈x2 + y2 + 1〉 and its field 
of fractions E = R(x)[y]/〈x2 + y2 + 1〉. As before, the generic D-module is G = E seen 
as a D-module via the embedding D −−→E, and its endomorphism algebra is EndD(G) ∼=
EndE(E) ∼= E. For each M ∈ D-Mod, we can consider the morphism of R-algebras 
νM : H −−→ EndR(M2) defined by νM (i) =

(
0 I
−I 0

)
and νM (j) =

(
yI xI
xI −yI

)
, which gives 

M2 a structure of left H-module. Then,

1. For B =
(
R 0
H H

)
there is a full and faithful functor H : D-Mod−−→B-Mod defined 

by H(M) = (M, M2, ψM : H ⊗R M −−→M2), where M2 is a left H-module through 
νM and ψM (h ⊗ m) = νM (h)(m, 0)t. Then, H ∼= Y ⊗D −, where Y = H(D) is a 
B-D-bimodule which is a free D-module of rank 3. Thus, G := H(E) ∼= Y ⊗D E is the 
generic B-module and EndB(G) ∼= E.

2. For B =
(
H 0
H R

)
there is a full and faithful functor H : D-Mod−−→B-Mod defined 

by H(M) = (M2, M, ψM : H ⊗H M2 −−→M), where M2 is a left H-module through 
νM and ψM (h ⊗ (m1, m2)t) = (0, 1)νM (h)(m1, m2)t. Then, H ∼= Y ⊗D −, where 
Y = H(D) is a B-D-bimodule which is a free D-module of rank 3. Thus, G :=
H(E) ∼= Y ⊗D E is the generic B-module and EndB(G) ∼= E.

3. In both precedent cases, for each d ∈ N and almost every indecomposable M ∈ B-Mod
with dimk M ≤ d, there is N ∈ D-Mod with H(N) ∼= M .

In the following statement we resume previous results and fix some notation convenient 
for later use.

Lemma 9.7. If Bi is some generically tame minimal R-algebra of infinite representation 
type, then:

1. If Bi ∈ {R[x], C[x], H[x], C[x, τ ]}, write Γi := Bi and denote by Hi the tensor product 
functor Yi ⊗Γi

− : Γi-Mod−−→Bi-Mod, where Yi = Γi.
2. If Bi =

(
R 0
H H

)
write Γi := D, denote respectively by Yi and Hi the bimodule Y and 

the functor H described in 9.6(1).
3. If Bi =

(
H 0
H R

)
write Γi := D, denote respectively by Yi and Hi the bimodule Y and 

the functor H described in 9.6(2).

Then, in each case, Hi : Γi-Mod−−→Bi-Mod is a full and faithful tensor product functor 
defined by a Bi-Γi-bimodule Yi, which is free of finite rank as a right Γi-module. It 
maps the skew field of fractions Qi of Γi onto the generic Bi-module. Moreover, Yi is a 
realization of Hi(Qi) over Γi, see 4.19. For each d ∈ N and almost every indecomposable 
M ∈ Bi-Mod with dimk M ≤ d, there is N ∈ Γi-mod with Hi(N) ∼= M . We use Γi-mod
to denote the category of finite-length Γi-modules.
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We consider the family R = {R[x], C[x], H[x], C[x, τ ], D}, which consists of (non-
necessarily commutative) principal ideal domains.

Let us reformulate in the following theorem some results of [4], for the real closed field 
case.

Theorem 9.8. Assume that an admissible ditalgebra A is constructible from a generically 
tame finite-dimensional basic algebra over a real closed field k. Fix d ∈ N. Then, there are 
constructible ditalgebras A1, . . . , Am, generically tame minimal algebras of infinite rep-
resentation type B1, . . . , Bm, where each Bi is an initial subalgebra of Ai, principal ideal 
domains Γ1, . . . , Γm ∈ R, and a family of functors F̂1, . . . , F̂m satisfying the following:

1. Each functor F̂i : Γi-Mod−−→A-Mod preserves indecomposability and isomorphism 
classes, for any i ∈ [1, m];

2. For almost every indecomposable module M ∈ A-Mod with dimk M ≤ d there are 
i ∈ [1, m] and N ∈ Γi-mod such that F̂i(N) ∼= M in A-Mod.

3. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-
posable modules in Γi-mod and Γj-mod, respectively, such that F̂i(Nu) ∼= F̂j(Mu), 
for all u ∈ U , then i = j.

4. Each functor F̂i is given by the following composition

Γi-Mod Hi−−→Bi-Mod Ei−−→Ai-Mod Fi−−→A-Mod,

where Ei is the associated extension functor, Fi is the composition of reduction func-
tors associated to a finite sequence of reductions which transform A into Ai, the 
algebra Γi associated to Bi and the functor Hi = Yi⊗Γi

− : Γi-Mod−−→Bi-Mod are 
those described in 9.7.

Proof. It follows from [4], (7.6) and 9.7, see [4], (7.3)(4), [4], (7.7), and [4], (10.1). �
Remark 9.9. If B is a proper subalgebra of the Roiter ditalgebra A, E : B-Mod−−→
A-Mod is the extension functor, and M ∈ B-Mod, then

EndA
(
E(M)

)
/ radEndA

(
E(M)

) ∼= EndB(M)/ radEndB(M).

Indeed, the restriction functor R : A-Mod−−→B-Mod determines a surjective morphism 
of algebras EndA(E(M)) −−→ EndB(M) which induces, by [6], (31.6) and [6], (5.8), the 
required isomorphism.

Theorem 9.10. Assume that an admissible ditalgebra A is constructible from a generically 
tame finite-dimensional basic algebra over a real closed field k. Then, for each d ∈ N, 
there are pregeneric A-modules G1, . . . , Gm and, for each i ∈ [1, m], a realization Zi of 
Gi over an algebra Γi ∈ R, which is free as a right Γi-module, such that
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1. For any i ∈ [1, m], the composition Γi-Mod
Zi⊗Γi

−
−−−−−→A-Mod LA−−→A-Mod preserves 

indecomposables and isomorphism classes.
2. For almost all indecomposable A-module M with dimk M ≤ d, we have an isomor-

phism M ∼= Zi ⊗Γi
N in A-Mod, for some i ∈ [1, m] and some indecomposable 

N ∈ Γi-mod.
3. Given i ∈ [1, m], if Qi denotes the skew field of fractions of Γi, then

EndA(Gi)/ radEndA(Gi) ∼= Qi.

Proof. Apply 9.8 to a given d and adopt the notation given there. For each i ∈ [1, m], 
consider the generic Γi-module Qi and its image Gi := F̂i(Qi) under the functor F̂i, 
which is the following composition

Γi-Mod Hi−−→Bi-Mod Ei−−→Ai-Mod Fi−−→A- Mod .

Then, by 9.7 and [4], (2.4)–(2.7), the A-module Gi is pregeneric. From [6], (22.7), the 
following diagram commutes up to isomorphism

Γi-Mod
Ei(Yi)⊗Γi

−
−−−−−−−→ Ai-Mod

LAi−−→ Ai-Mod

‖
⏐⏐⏐⏐
F i

⏐⏐⏐⏐
Fi

Γi-Mod
FiEi(Yi)⊗Γi

−
−−−−−−−−→ A-Mod LA−−→ A-Mod.

The composition F̂i
∼= FiLAi

[Ei(Yi) ⊗Γi
−] preserves indecomposability and isomorphism 

classes. This implies the same property for the composition functor LA(FiEi(Yi) ⊗Γi
−)

in the lower row of the diagram.
Since Fi is a reduction functor, the A-Γi-bimodule Zi := FiEi(Yi) is projective and 

finitely generated by the right. But Γi is a principal ideal domain, thus Zi is in fact a 
free right Γi-module of finite rank.

We have in A-Mod the isomorphisms Zi ⊗Γi
Qi = LA(FiEi(Yi) ⊗Γi

Qi) ∼=
FiLAi

(Ei(Yi) ⊗Γi
Qi) ∼= FiEiHi(Qi) ∼= F̂i(Qi) = Gi. From [6], (31.6) and 9.9, keep-

ing in mind that Fi and Hi are full and faithful, we have

EndA(Gi)/ radEndA(Gi) ∼= EndA
(
FiEiHi(Qi)

)
/ radEndA

(
FiEiHi(Qi)

)
∼= EndΓi

(Qi)/ radEndΓi
(Qi) ∼= Qop

i
∼= Qi.

Since the functors Ei and Fi preserve realizations, from 9.7, we obtain the wanted 
realization Zi for Gi over the algebra Γi, and we have proved (1) and (3).

Moreover, from 9.8, we know that for almost every indecomposable A-module M
with dimk M ≤ d, we have an isomorphism M ∼= F̂i(N) ∼= Zi ⊗Γi

N in A-mod for some 
i ∈ [1, m] and some N ∈ Γi-mod. �
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10. Reduction to minimal algebras

Remark 10.1. Assume that A is an admissible ditalgebra over a perfect field as in 2.2
and consider the decomposition 1 =

∑n
i=1 ei of the unit of the algebra R as a sum of cen-

tral primitive orthogonal idempotents. When dealing with the transformation of length 
vectors of modules under reduction functors, it is convenient to introduce the following 
matrices. Assume that the ditalgebra Az is obtained from A by some reduction of type 
[4], (2.5), [4], (2.6) or 8.2, and denote by F z : Az-Mod−−→A-Mod the corresponding 
reduction functor (for z ∈ {d, r, X}). Then, we can consider the following matrices with 
non-negative integral entries:

1. In the regularization case, we have the matrix [F r] which is just the identity n × n

matrix;
2. In the deletion of idempotents case, say that we delete the idempotents {et+1, . . . , en}, 

for some t ∈ [1, n −1], we have the (n ×t)-matrix [F d] such that [F d]i,i = 1 if i ∈ [1, t], 
and all the other components are zero;

3. In the reduction of a B-module case, we are assuming that B is an initial subalge-
bra of A and that X is a direct sum of pairwise non-isomorphic finite-dimensional 
indecomposable B-modules. Consider a splitting of the radical EndB(X)op =
S ⊕ P and the canonical decomposition 1 =

∑t
j=1 fj of the unit of S as 

a sum of central primitive orthogonal idempotents. Then, there are two inter-
esting (n × t)-matrices to consider: the matrix [FX ]e defined by [FX ]ei,j :=
dimSfj (eiXfj), as considered in 4.4, and the matrix [FX ] defined by [FX ]i,j :=
dimRei(eiXfj), as considered in [4], (7.3). These matrices are related by the 
formula

[
FX

]e
i,j

= [Rei : k]
[Sfj : k]

[
FX

]
i,j
.

Let us write [F r]e := [F r] and [F d]e := [F d], and also write �(M) for the length vector 
of the A-module M over the underlying algebra of the layer of A. Then, for any z and 
M ∈ Az-Mod, we have the formulas

{
�
(
F z(M)

)
=

[
F z

]
�(M)t

�e
(
F z(M)

)
=

[
F z

]e
�e(M)t,

which follow from [4], (7.3) and 4.4, taking E = EndAX (M)op ∼= EndA(FX(M))op in 
case z = X.

If F : A′-Mod−−→A-Mod is a composition of reduction functors, say F = F zs · · ·F z1 , 
with zi ∈ {d, r, X}, then its action on length vectors and endolength vectors is deter-
mined, respectively, by the matrices [F ] := [F zs ] · · · [F z1 ] and [F ]e := [F zs ]e · · · [F z1 ]e. 
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An interesting fact is that, assuming that the underlying algebra of the layer of A′ has 
u indecomposable factors, we have:

supp
(
[F ]�t

)
= supp

(
[F ]e�t

)
, for any � ∈ Zu with non-negative entries.

Here, supp(�) denotes the set of indexes i ∈ [1, u] with �i �= 0. In particular, given any 
A′-modules M and N such that �(M) and �e(N) are linearly dependent, then the module 
F (M) is sincere iff so is the module F (N).

Lemma 10.2. Assume that k is a real closed field and that B is a generically tame finite-
dimensional minimal algebra of infinite representation type. Then the endolength vector 
of the unique generic B-module belongs to the radical of the quadratic form of B.

Proof. In the first case listed in 9.5, the generic module has the form described in 9.6(1). 
Hence, its endolength vector (1, 2) generates the radical of the quadratic form of B. The 
other case is similar. �
Lemma 10.3. Let A be an admissible ditalgebra over any field k, and adopt the notation 
of 2.2. Assume that G is a pregeneric A-module with a realization Z over some principal 
ideal k-domain Γ such that Z is free as a right Γ -module. Assume that a non-zero module 
M ∈ A-mod has the form M ∼= Z ⊗Γ N , for some N ∈ Γ -mod. Then,

‖M‖ = (dimk N)2‖G‖e,

where ‖M‖ =
∑

i,j dimDi
(eiM) dimDj

(ejM) dimk(eiW0ej) is the norm used systemati-
cally in [4]. Moreover, the modules M and G share the same support. In particular, M
is sincere if and only if G is sincere.

Proof. We know that G ∼= Z ⊗Γ Q, where Q is the skew field of fractions of Γ , and 
endol(G) = dimQ(Z⊗ΓQ). By assumption Z is a free right Γ -module, then the Γ -module 
eiZ is projective and in fact free (say of rank ri) as a right Γ -module. Then, �e(G) =
�e(Z ⊗Γ Q) = (r1, . . . , rn). Indeed, since Q embeds in EZ⊗ΓQ through q 	→ (1 ⊗ μq, 0), 
where μq is right multiplication by q, any composition series of the EZ⊗ΓQ-module 
eiZ ⊗Γ Q is a filtration of Q-vector spaces, thus �EZ⊗Γ Q

(eiZ ⊗Γ Q) ≤ dimQ(eiZ ⊗Γ Q). 
Then,

endol(Z ⊗Γ Q) =
∑
i

�EZ⊗Γ Q
(eiZ ⊗Γ Q) ≤

∑
i

dimQ(eiZ ⊗Γ Q) = dimQ(Z ⊗Γ Q),

and we obtain the equalities �EZ⊗Γ Q
(eiZ ⊗Γ Q) = dimQ(eiZ ⊗Γ Q) = ri, as claimed. 

Moreover, dimk(eiM) = dimDi
(eiM) dimk Di. Also, M ∼= Z ⊗Γ N , implies eiM ∼=

eiZ ⊗Γ N ∼= riN . Then, we obtain that �e(G) dimk N = (dimk e1M, . . . , dimk enM). 
From here our lemma follows. �
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For the statement of the following theorem and the next one, we agree that, given a 
generically tame infinite-dimensional minimal algebra B of infinite representation type, 
to call regular any finite-dimensional B-module. For the remaining generically tame 
minimal algebras B of infinite representation type, those considered in 9.5, it already 
makes sense to consider the regular B-modules, see [4], (6.6).

Theorem 10.4. Assume that an admissible ditalgebra A is constructible from a generically 
tame finite-dimensional basic algebra over a real closed field k. Then, for any integer 
d ≥ 0, there are constructible ditalgebras A1, . . . , Am, generically tame minimal algebras 
of infinite representation type B1, . . . , Bm, where each Bi is an initial subalgebra of Ai, 
and a family of functors F1, . . . , Fm such that:

1. The functor Fi : Bi-Mod−−→A-Mod preserves indecomposability and isomorphism 
classes, for any i ∈ [1, m].

2. For each sincere pregeneric G ∈ A-Mod with ‖G‖e ≤ d there is a unique i ∈ [1, m]
such that Fi(Hi) ∼= G in A-Mod, where Hi denotes the unique generic Bi-module.

3. For almost every sincere indecomposable M ∈ A-mod with ‖M‖ ≤ d there are i ∈
[1, m] and N ∈ Bi-mod such that Fi(N) ∼= M in A-Mod.

4. The functor Fi : Bi-mod−−→A-mod maps regular Bi-modules onto sincere 
A-modules, for each i ∈ [1, m].

5. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-
posable regular modules in Bi-mod and Bj-mod, respectively, such that Fi(Nu) ∼=
Fj(Mu) for all u ∈ U , then i = j.

6. Each functor Fi is the composition Bi-Mod Ei−−→Ai-Mod Gi−−→A-Mod, where Ei is 
the associated extension functor and Gi is the composition of the reduction functors 
associated to a finite sequence of reductions which transform A into Ai.

Proof. This proof is an adaptation of the proof of [4], (7.5), but here we deal with 
pregeneric modules in addition to finite-dimensional indecomposables, and we use simul-
taneously the endonorm and the usual norm for the induction. So we give a full proof.

Notice first that the statement of our Theorem 10.4 follows from the statement 10.4’, 
obtained from 10.4 replacing item 2 by the following:

2’. For each sincere pregeneric G ∈ A-Mod with 4‖G‖e ≤ d there is a unique i ∈ [1, m]
such that Fi(Hi) ∼= G in A-Mod, where Hi denotes the unique generic Bi-module.

Indeed, given d ≥ 0, we can apply 10.4’ to the integer d′ = 4d to obtain 10.4 for d. 
Of course, we deal with 4‖G‖e instead of ‖G‖e in order to guarantee that 4‖G‖e < d

implies that 4‖G‖e ≤ d − 1.
Since A is constructible, from [4], (4.6), we know that A is pregenerically tame. The 

same will remain true for any ditalgebra obtained from A by a finite number of reduc-
tions.
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We shall prove 10.4’ by induction on d. In this proof we shall say that an admissible 
ditalgebra A is (resp. sincerely) d-trivial iff there is only a finite number of isoclasses 
of (resp. sincere) indecomposable A-modules M with ‖M‖ ≤ d, and there is no (resp. 
sincere) pregeneric A-module G with 4‖G‖e ≤ d.

If d = 0, then A is sincerely d-trivial. Indeed, if G ∈ A-Mod is sincere pregeneric with 
‖G‖e = 0 then, the layer of A is of the form (R, W ), with W0 = 0. Hence, A admits no 
pregeneric modules (in fact, there is no infinite-dimensional indecomposable A-module); 
similarly, if M ∈ A-Mod is a sincere indecomposable A-module with ‖M‖ = 0, again 
the layer of A is of the form (R, W ), with W0 = 0 and there is only a finite number of 
isoclasses of finite-dimensional indecomposables.

So if d = 0, there is nothing to show: the empty family of functors works. So assume 
that d > 0 and that 10.4’ holds for any admissible ditalgebra A′ constructible from a 
generically tame finite-dimensional basic algebra and any d′ < d.

Now, we have to consider the sincere pregeneric modules G ∈ A-Mod with 4‖G‖e ≤ d

(for item 2’) and the sincere indecomposable modules M ∈ A-mod with ‖M‖ ≤ d (for 
item 3 ). Again, if A admits no such modules G, and only finitely many isoclasses of 
such modules M , we have nothing to show (the empty family of functors works). So we 
assume that A is not sincerely d-trivial.

Since A is an admissible ditalgebra, we can look at the triangular filtration 0 = W 0
0 ⊆

W 1
0 ⊆ · · · ⊆ W s

0 = W0, which is additive because the field k is perfect and hence R⊗k R

is semisimple. Then, after performing a refinement, if necessary, we can assume that W 1
0

is a simple direct summand of the R-R-bimodule W0. Then, by triangularity, we have 
that δ(W 1

0 ) ⊆ W1. Moreover, we have R-R-bimodule decompositions W0 = W 1
0 ⊕ W ′′

0
and W1 = δ(W 1

0 ) ⊕W ′′
1 . We consider two cases.

Case 1. δ(W 1
0 ) �= 0.

Since W 1
0 is a simple R-R-bimodule, W 1

0 ∩ Ker δ = 0 and we can apply the reg-
ularization procedure described in [4], (2.6), to obtain an equivalence functor F r :
Ar-Mod−−→A-Mod, as in [6], (8.19). If Ar is sincerely (d − 1)-trivial, then A is sin-
cerely d-trivial. Indeed, given any sincere pregeneric A-module G with 4‖G‖e ≤ d, there 
is H ∈ Ar-Mod with F r(H) ∼= G and ‖H‖e < ‖G‖e, and so H is a sincere pregeneric 
Ar-module with 4‖H‖e ≤ d − 1. Similarly, an infinite family {Mt}t of pairwise non-
isomorphic sincere indecomposable A-modules with ‖Mt‖ ≤ d gives rise to a family {Nt}t
of pairwise non-isomorphic sincere indecomposable Ar-modules with F r(Nt) ∼= Mt and 
‖Nt‖ ≤ d − 1.

By assumption, A is not sincerely d-trivial, thus Ar is not sincerely (d −1)-trivial and 
we can apply the induction hypothesis to the constructible pregenerically tame ditalgebra 
Ar and d − 1, to obtain a family of functors Fi : Bi-Mod−−→Ar-Mod, i ∈ [1, m], 
satisfying the corresponding conditions 1, 2’, 3–6. Let us show that F := {F rFi | i ∈
[1, m]} is the required family of functors for A and d.
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Item 1 is clear because F r preserves indecomposables and isomorphism classes. Hence, 
so does every functor in F . Item 2’ is also clear, since we realize every sincere pregeneric 
A-module G with 4‖G‖e ≤ d as F r(N) ∼= G, for some Ar-module N with 4‖N‖e < d. 
Then, we can apply our induction hypothesis to such sincere pregeneric Ar-module N to 
obtain Fi(H) ∼= N , for some generic H ∈ Bi-Mod, thus G ∼= F rFi(H) and we are done.

Item 3 is also clear, since we realize every sincere indecomposable A-module M with 
‖M‖ ≤ d as F r(N) ∼= M , for some Ar-module N with ‖N‖ < d. Then, we can apply our 
induction hypothesis to such sincere indecomposable Ar-module N to obtain Fi(H) ∼= N , 
for some H ∈ Bi-mod, thus M ∼= F rFi(H) and we are done.

Item 4 follows from the induction hypothesis and the fact that the functor F r maps 
sincere modules onto sincere modules. Item 5 follows from the induction hypothesis and 
the fact that F r reflects isomorphisms. Item 6 is clear.

Case 2. δ(W 1
0 ) = 0.

Consider the initial subalgebra B of A determined by the R-R-bimodule W 1
0 given 

above. Consider also the extension functor E : B-Mod−−→A-Mod and the restriction 
functor R : A-Mod−−→B-Mod. Let us examine the algebra B.

Since W 1
0 is a simple R-R-bimodule, there exist i, j ∈ [1, n] with ejW 1

0 ei = W 1
0 . 

If i = j, for notational simplicity, we assume that i = 1 and write e := e1. Then, 
B = TR(W 1

0 ) ∼= TD1(W 1
0 ) ×D2 × · · · ×Dn. Thus eBe = TD1(W 1

0 ) is a minimal algebra. 
If i �= j, for notational simplicity, we assume that i = 1, j = 2 and write e = e1 + e2. 
Then, B = TR(W 1

0 ) ∼= TD1×D2(W 1
0 ) × D3 × · · · × Dn. Then, eBe = TD1×D2(W 1

0 ) is a 
minimal algebra.

In both cases, the extension functor Be ⊗eBe− : eBe-Mod−−→B-Mod is full, faithful, 
and such that, with only a finite number of possible exceptions, the isoclasses of the 
indecomposable B-modules are represented by modules of the form Be ⊗eBeH, for some 
indecomposable H ∈ eBe-Mod. The exceptions are some finite-dimensional B-modules.

Since A is pregenerically tame, from [4], (2.4), we know that B is also pregenerically 
tame. It follows that eBe is pregenerically tame too. We can consider the composition 
functor F

eBe-Mod Be⊗eBe−−−−−−→ B-Mod E−−→ A-Mod,

which, from [4], (2.4), preserves indecomposability and isomorphism classes. Notice that 
if F maps an indecomposable eBe-module onto a sincere A-module, then B = eBe. We 
will need the following claim.

Claim. Assume that eBe has infinite representation type. Then, if F maps any inde-
composable eBe-module onto a sincere A-module, it maps each indecomposable regular 
eBe-module onto a sincere A-module.
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Proof of Claim. Assume that F maps an indecomposable eBe-module onto a sincere 
A-module. Thus, eBe = B. If i = j and 0 �= H ∈ B-Mod, then F (H) not sincere means 
that the number n of idempotents in R is > 1, and hence eBe �= B, a contradiction. 
Then, i �= j. As remarked in [4], (6.6), the generator λ of the radical of the quadratic 
form of eBe is sincere and such that, for any indecomposable regular B-module H, we 
have �(H) = cHλ, for some cH ∈ N. Then �(F (H)) = cHλ has no zero components, and 
F (H) is sincere. �

In case the algebra B is not of finite representation type, apply 7.2 to the number 
d′ := 4nd, to obtain a finite family I(d′) of finite-dimensional indecomposable B-modules 
such that:

• For any pregeneric A-module G with endol(G) ≤ d′ and G � E(N) in A-Mod, for 
any pregeneric N ∈ B-Mod, the module R(G) is isomorphic in B-Mod to a direct 
sum of modules in I(d′).

• For any indecomposable A-module M with dimk M ≤ d′ and M � E(N) in A-Mod, 
for any N ∈ B-Mod, the module R(M) is isomorphic in B-Mod to a direct sum of 
modules in I(d′).

If we are in the case where the algebra B is of finite representation type, we denote 
by I(d′) a complete set of pairwise non-isomorphic finite-dimensional indecomposable 
B-modules. Here, B is finite-dimensional and of finite representation type, thus every 
B-module is a direct sum of finite-dimensional indecomposables, see [2]. Then, we have:

• For any pregeneric A-module G with endol(G) ≤ d′, the module R(G) is isomorphic 
in B-Mod to a direct sum of modules in I(d′).

• For any indecomposable A-module M with dimk M ≤ d′, the module R(M) is iso-
morphic in B-Mod to a direct sum of modules in I(d′).

In any case, B of finite representation type or not, let X1, . . . , Xt be a complete set 
of pairwise non-isomorphic representatives of the B-modules in I(d′) and make X :=
X1 ⊕ · · · ⊕Xt. Consider the reduction A 	→ AX described in [4], (7.3) and its associated 
functor FX : AX -Mod−−→A-Mod. From [4], (2.7), the ditalgebra AX is pregenerically 
tame and constructible. Then,

(a1) The class of pregeneric A-modules of endolength ≤ d′ is contained in the union of 
the classes ImgenE and ImFX , where ImgenE denotes the class of A-modules G
of the form G ∼= E(N), for some pregeneric N ∈ B-Mod, and ImFX denotes the 
indecomposable A-modules G, which satisfy that R(G) ∼=

⊕t
i=1

⊕
Ii
Xi in B-Mod, 

for some index sets I1, . . . , It.
(a2) The class of indecomposable A-modules M with dimk M ≤ d′ is contained in the 

union of the classes ImE and ImFX , where ImE denotes the class of A-modules 
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M of the form M ∼= E(N), for some N ∈ B-mod, and ImFX denotes the indecom-
posable A-modules M , which satisfy that R(M) ∼=

⊕t
i=1 niXi in B-Mod, for some 

n1, . . . , nt ≥ 0.

From [4], (7.3)(2) we obtain:

(b1) An A-module G with the last property in (a1) has the form FX(N) ∼= G, for some 
pregeneric N ∈ AX -Mod, see 4.4(1). Moreover, any sincere pregeneric A-module G
with 4‖G‖e ≤ d lies in ImgenE ∪ ImFX . This follows from the previous discussion 
and 8.5.

(b2) An A-module M with the last property in (a2) has the form FX(N) ∼= M , for some 
N ∈ AX -mod. Moreover, any sincere indecomposable A-module M with ‖M‖ ≤ d

lies in ImE ∪ ImFX . This follows from the previous discussion using [4], (7.2) and 
the fact that dimk M ≤ 4�(M).

Assume that AX is (d − 1)-trivial. Then, it is sincerely (d − 1)-trivial, and there are 
no sincere pregeneric A-modules G ∈ ImFX with 4‖G‖e ≤ d, and there are only finitely 
many pairwise non-isomorphic sincere indecomposable A-modules M with ‖M‖ ≤ d. 
Then:

(c1) Every sincere pregeneric A-module G with 4‖G‖e ≤ d lies in ImgenE. In particular, 
we have in this case that A admits exactly one pregeneric A-module with 4‖G‖e ≤ d.

(c2) Almost every sincere indecomposable A-module M with ‖M‖ ≤ d lies in ImE.

Then, since A is not sincerely d-trivial, either B admits a pregeneric B-module or an 
infinite family of pairwise non-isomorphic finite-dimensional indecomposable B-modules. 
Thus, the algebra B has infinite representation type (if B is finite-dimensional, this 
follows for instance from [10], (7.3)).

Let us see that, in this case, the family F := {F} satisfies properties 1, 2’, 3–5 for A
and d.

We already know that F satisfies item 1. Since there is only one sincere pregeneric 
A-module G with 4‖G‖e ≤ d and it lies in ImgenE, it has the form G ∼= E(N), for the 
pregeneric B-module N . From our Claim, we have B = eBe and F (N) ∼= G. Thus, item 
2’ holds. Item 3 also holds clearly. From our Claim, the functor F maps indecomposable 
regular modules onto sincere A-modules (item 4 ). Finally, item 5 holds trivially because 
there is only one functor in F .

From now on, we assume that AX is not (d − 1)-trivial.
Consider the constructible ditalgebras AXd1 , . . . , AXds obtained from AX by deletion 

of a finite number of idempotents of S, and the corresponding reduction functors F di :
AXdi -Mod−−→AX -Mod, for i ∈ [1, s].

Since AX is not (d − 1)-trivial, we have the following two non-excluding possibilities:
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(p1) The ditalgebra AX admits pregeneric modules N with 4‖N‖e ≤ d − 1. These pre-
generic modules determine either sincere pregeneric AX-modules N with 4‖N‖e ≤
d − 1, thus AX is not sincerely (d − 1)-trivial, or there is a finite subset of idempo-
tents of S such that the ditalgebra AXdi obtained from AX by eliminating these 
idempotents admits sincere pregeneric AXdi-modules N ′ with F di(N ′) ∼= N and 
4‖N ′‖e ≤ d − 1.

(p2) The ditalgebra AX admits infinite families {Nt}t of pairwise non-isomorphic mod-
ules Nt with ‖Nt‖ ≤ d −1. These modules determine either sincere indecomposable 
AX -modules Nt with ‖Nt‖ ≤ d −1, thus AX is not sincerely (d −1)-trivial, or there is 
a finite subset of idempotents of S such that the ditalgebra AXdi obtained from AX

by eliminating these idempotents admits a family {N ′
t}t of sincere indecomposable 

AXdi -modules N ′
t with F di(N ′

t) ∼= Nt and ‖N ′
t‖ ≤ d − 1.

Define AXd0 := AX and denote by F d0 : AXd0 -Mod−−→AX -Mod the identity func-
tor. Every sincere AX -module G lies in AXd0 -Mod and F d0(G) = G.

Now, we consider the subset I of [0, s] defined by i ∈ I iff the ditalgebra AXdi is not 
sincerely (d − 1)-trivial. Thus I �= ∅. Notice that, for j ∈ [0, s] \ I, the ditalgebra AXdj

admits only a finite number of isomorphism classes of sincere indecomposable modules 
N ′ with ‖N ′‖ ≤ d − 1 and it admits no pregeneric module G′ with 4‖G′‖e ≤ d − 1.

Then, apply the induction hypothesis to each AXdi and d − 1, for i ∈ I, to obtain 
minimal algebras {Bij}ni

j=1 and functors {Fij : Bij-Mod−−→AXdi -Mod}ni
j=1 satisfying 

the corresponding requirements. Then, for any i and j, we can consider the compositions

Bij-Mod Fij−−→AXdi -Mod Fdi−−→AX -Mod FX−−→A-Mod.

We will extract the family of functors we need for A and d from the family

F := {F} ∪
{
FXF diFij

∣∣ i ∈ I and j ∈ [1, ni]
}
.

First, we show that the functors in the family F cover every sincere pregeneric 
A-module G with 4‖G‖e ≤ d and almost every sincere indecomposable A-module M
with ‖M‖ ≤ d. That is items 2’ and 3 are satisfied by this family.

Indeed, given such a module G, by (b1) in the above discussion, we have that G ∈
ImFX ∪ ImgenE. If G is a sincere pregeneric A-module with 4‖G‖e ≤ d, such that for 
some N ∈ AX -Mod, we have FX(N) ∼= G, then there is i ∈ I and a sincere pregeneric 
AXdi -module L with F di(L) ∼= N , hence 4‖L‖e = 4‖N‖e < 4‖G‖e ≤ d. Thus, 4‖L‖e ≤
d −1. By the induction hypothesis, we get L ∼= Fij(H), where H is the generic Bij-module. 
Hence FXF diFij(H) ∼= G, as claimed. If G ∈ ImgenE, thus G ∼= E(N), for some 
generic N ∈ B-Mod. Since N is indecomposable and G is sincere, we have B = eBe, and 
F (N) ∼= G.

Similarly, the functors in the family F cover almost every sincere indecomposable 
A-module M with ‖M‖ ≤ d. That is item 3 is satisfied by this family. Indeed, given 
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such module M , by (b2) in the above discussion, we have that M ∈ ImFX ∪ ImE. 
Moreover, for every such indecomposable M in ImFX , we have that M ∼= FX(N) for 
some N ∈ AX -mod and N ∼= F di(L), for some i ∈ I and some sincere indecomposable 
L ∈ AXdi -Mod. We know that ‖L‖ = ‖N‖ < ‖M‖ ≤ d, because M is sincere. By 
the induction hypothesis, for almost every such module L, we get L ∼= Fij(H), where 
H ∈ Bij-mod. Hence FXF diFij(H) ∼= M , as claimed. If M ∈ ImE, thus M ∼= E(N), 
for some N ∈ B-mod. Since N is indecomposable and M is sincere, we have B = eBe, 
and F (N) ∼= M .

In the following discussion we will discard some functors of the family F , without 
spoiling the covering conditions we have just proved for F .

First, if B is of finite representation type then any pregeneric G ∈ A-Mod has R(G)
isomorphic in B-Mod to a direct sum of modules in I(d′), therefore G ∈ ImFX . Then, 
as we have just seen, every sincere pregeneric A-module G in ImFX with 4‖G‖e ≤ d

has the form FXF diFij(H) ∼= G, where H is the generic Bij-module. Similarly, any 
indecomposable M ∈ A-Mod has R(M) isomorphic in B-Mod to a direct sum of modules 
in I(d′), therefore M ∈ ImFX . Then, as before, almost every sincere indecomposable 
A-module M in ImFX with ‖M‖ ≤ d has the form FXF diFij(H) ∼= M , for some 
H ∈ Bij-mod. Thus we can discard the functor F from the family F .

So, we will assume that the functor F is left in F only if B has infinite representation 
type. Then, the algebra eBe, as well as any of the minimal algebras Bij are generically 
tame of infinite representation type.

If the functor F maps one indecomposable regular eBe-module H onto a non-
sincere A-module, from our previous Claim, we know that it maps each indecomposable 
eBe-module onto a non-sincere A-module. In particular, the functor F maps the generic 
eBe-module onto a non-sincere pregeneric A-module. In this case, again we can discard 
the functor F from the family F .

So, we will assume that F is left in the family F only if eBe is such that F maps 
indecomposable regular eBe-modules onto sincere A-modules.

Now, assume that the functor FXF diFij is such that FXF diFij(H) is not sincere, 
for some indecomposable regular Bij-module H. Again, from [4], (6.6), we know the 
existence of a vector λ such that, for any indecomposable regular Bij-module H ′, there 
is cH′ ∈ N with �(H ′) = cH′λ. By 10.2, we get �e(Hij) = cλ, where Hij is the generic 
Bij-module. Having in mind 10.1, we have that FXF diFij(H) is sincere if and only if 
FXF diFij(Hij) is so. Hence, using [4], (7.4)(2), we can discard the functor FXF diFij

from our family F .
So, we assume that the functor FXF diFij appears in the family F only if it maps 

indecomposable regular modules onto sincere A-modules.
Now, we have to show that the family F , after discarding the functors pointed out 

above, satisfies items 1, 2’, 3–5. We already know that item 1 holds, because each functor 
in F is either a composition of reduction functors or it is F . Item 2’ and 3 hold, because 
we only discarded functors when we could cover every sincere pregeneric A-module G
such that 4‖G‖e ≤ d and almost every sincere indecomposable A-module M such that 
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‖M‖ ≤ d with the remaining functors in F . Item 4 holds, because we discarded every 
functor in F without this property. In the following, we proceed to the proof of item 5.

Notice first that, as a consequence of [4], (7.3)(2), if L ∈ B-Mod is an indecompos-
able such that E(L) ∼= FX(L′), for some L′ ∈ AX -Mod, then L ∼= RE(L) has to be 
isomorphic to one of the indecomposable B-modules X1, . . . , Xn. Thus, for almost every 
indecomposable N ∈ B-Mod, there is no L′ ∈ AX -Mod with FX(L′) ∼= E(N). This im-
plies that there is no pair of infinite families of pairwise non-isomorphic indecomposables 
{Nu}u∈U in B-Mod and {Mu}u∈U in Bij-Mod such that FXF diFij(Mu) ∼= F (Nu), for 
all u ∈ U .

Assume then that there is a pair of infinite families of pairwise non-isomorphic in-
decomposable regular modules {Mu}u∈U in Bij-mod and {Nu}u∈U in Bi′j′ -mod such 
that FXF di′Fi′j′(Nu) ∼= FXF diFij(Mu), for all u ∈ U . Then, since FX reflects isomor-
phisms, we get F di′Fi′j′(Nu) ∼= F diFij(Mu), for all u ∈ U . In particular, they have the 
same support. But item 4 holds for the families {Fij}j and {Fi′j′}j′ and so Fi′j′(Nu)
and Fij(Mu) are sincere modules over AXdi′ and AXdi , respectively, hence i = i′. Then, 
Fij′(Nu) ∼= Fij(Mu), for all u ∈ U . From the induction hypothesis, j = j′.

Then, the family of functors F is what we wanted to construct, the last item follows 
from the given construction. �
Theorem 10.5. Assume that an admissible ditalgebra A is constructible from a generically 
tame finite-dimensional basic algebra over a real closed field k. Then, for any integer 
d ≥ 0, there are constructible ditalgebras A1, . . . , Am, generically tame minimal algebras 
of infinite representation type B1, . . . , Bm, where each Bi is an initial subalgebra of Ai, 
and a family of functors F1, . . . , Fm such that:

1. The functor Fi : Bi-Mod−−→A-Mod preserves indecomposability and isomorphism 
classes, for any i ∈ [1, m].

2. For each pregeneric G ∈ A-Mod with endol(G) ≤ d there is a unique i ∈ [1, m] such 
that Fi(Hi) ∼= G in A-Mod, where Hi denotes the unique generic Bi-module.

3. For almost every indecomposable M ∈ A-Mod with dimk M ≤ d there are i ∈ [1, m]
and N ∈ Bi-mod such that Fi(N) ∼= M in A-Mod.

4. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-
posable regular modules in Bi-mod and Bj-mod, respectively, such that Fi(Nu) ∼=
Fj(Mu) for all u ∈ U , then i = j.

5. Each functor Fi is the composition Bi-Mod Ei−−→Ai-Mod Gi−−→A-Mod, where Ei is 
the associated extension functor and Gi is the composition of the reduction functors 
associated to a finite sequence of reductions which transform A into Ai.

Proof. This proof is an adaptation of the poof of [4], (7.6). From [4], (4.6), we know that 
A is pregenerically tame. Notice that the statement of our Theorem 10.5 follows from 
the statement 10.5’, obtained from 10.5 replacing items 2 and 3 by the following:



270 R. Bautista et al. / Journal of Algebra 419 (2014) 223–276
2’. For each pregeneric G ∈ A-Mod with ‖G‖e ≤ d there is a unique i ∈ [1, m] such that 
Fi(Hi) ∼= G in A-Mod, where Hi denotes the unique generic Bi-module.

3’. For almost every indecomposable M ∈ A-Mod with ‖M‖ ≤ d there are i ∈ [1, m] and 
N ∈ Bi-mod such that Fi(N) ∼= M in A-Mod.

Indeed, given d ≥ 0, there are only finitely many endolength vectors �e such that ∑n
i=1 �

e
i ≤ d, consider their maximal endonorm d̂ := max
e{‖�e‖e}. Then, 4d̂ is a non-

negative integer and if 2’ holds for 4d̂, any pregeneric A-module G with endol(G) ≤ d has 
endolength vector �e := �e(G) satisfying 

∑n
i=1 �

e
i ≤ d and, therefore, ‖G‖e ≤ 4d̂. Simi-

larly, given d ≥ 0, there is a number d̃ such that for any indecomposable A-module M
with dimk M ≤ d, we have ‖M‖ ≤ d̃. Then, we can apply 2’ and 3’ to d′ := max{4d̂, d̃}
to obtain 2 and 3.

In this proof we shall say that an admissible ditalgebra A is d-trivial iff there is only 
a finite number of isoclasses of indecomposable A-modules M with ‖M‖ ≤ d, and there 
is no pregeneric A-module G with ‖G‖e ≤ d.

We assume that A is not d-trivial, otherwise, there is nothing to prove (the empty 
family of functors works).

Consider the admissible constructible ditalgebras Ad1 , . . . , Adt obtained from A by 
deletion of a finite number of idempotents of R. We consider also Ad0 := A and the 
identity functor F d0 : Ad0-Mod−−→A-Mod. Consider the subset I of [0, t] defined by 
i ∈ I iff Adi is not d-trivial. Discard all the ditalgebras Adi with i /∈ I.

Then, apply 10.4 to each Adi and d, for i ∈ I, to obtain minimal algebras {Bij}ni
j=1

and functors Fij : Bij-Mod−−→Adi-Mod satisfying the corresponding statements 1–6
of 10.4 for each Adi and d. Then, we can consider the family of compositions

F :=
{
Bij-Mod Fij−−→Adi-Mod Fdi−−→A-Mod

∣∣ i ∈ I and j ∈ [1, ni]
}
.

It is clear that the family F satisfies item 1, because the families {Fij}j do so and 
F di preserves indecomposables and isomorphism classes. The family F also satisfies 2’
because, given any pregeneric G ∈ A-Mod with ‖G‖e ≤ d, we have G ∼= F di(N), for 
some sincere pregeneric N ∈ Adi -Mod with ‖N‖e = ‖G‖e ≤ d. For each one of these 
pregeneric modules N , we have Fij(Hij) ∼= N , where Hij denotes the generic Bij-module. 
In a similar way, one shows that F satisfies item 3’.

Assume then that there is a pair of infinite families of pairwise non-isomorphic inde-
composable regular modules {Nu}u∈U in Bij-mod and {Mu}u∈U in Bi′j′ -mod such that 
F di′Fi′j′(Mu) ∼= F diFij(Nu), for all u ∈ U . Then, proceeding as in the proof of the last 
theorem, we obtain i = i′ and j = j′. �
Theorem 10.6. Assume that an admissible ditalgebra A is constructible from a generically 
tame finite-dimensional basic algebra over a real closed field k. Fix d ∈ N. Then, there 
are constructible ditalgebras A1, . . . , Am, generically tame minimal algebras of infinite 
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representation type B1, . . . , Bm, where each Bi is an initial subalgebra of Ai, principal 
ideal domains Γ1, . . . , Γm ∈ R, and a family of functors F̂1, . . . , F̂m satisfying that:

1. The functor F̂i : Γi-Mod−−→A-Mod preserves indecomposability and isomorphism 
classes, for any i ∈ [1, m].

2. For each pregeneric module G ∈ A-Mod with endol(G) ≤ d there is a unique 
i ∈ [1, m] such that F̂i(Qi) ∼= G in A-Mod, where Qi denotes the unique generic 
Γi-module.

3. For almost every indecomposable M ∈ A-Mod with dimk M ≤ d there are i ∈ [1, m]
and N ∈ Γi-mod such that F̂i(N) ∼= M in A-Mod.

4. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-
posable modules in Γi-mod and Γj-mod, respectively, such that F̂i(Nu) ∼= F̂j(Mu), 
for all u ∈ U , then i = j.

5. Each functor F̂i is given by the composition

Γi-Mod Hi−−→Bi-Mod Ei−−→Ai-Mod Fi−−→A-Mod,

where Ei is the associated extension functor, Fi is the composition of reduction func-
tors associated to a finite sequence of reductions which transform A into Ai, the 
algebra Γi associated to Bi and the functor Hi = Yi⊗Γi

− : Γi-Mod−−→Bi-Mod are 
those described in 9.7.

Proof. It follows immediately from 10.5 and 9.7. For item 4, one has to remember that, if 
Bi is finite-dimensional, the indecomposable regular Bi-modules are characterized by the 
fact that their length vector is a multiple of the generator of the radical of the quadratic 
form of the algebra. Thus, the image of Hi consists of regular Bi-modules, see 9.6. �
Corollary 10.7. Assume that an admissible ditalgebra A is constructible from a generically 
tame finite-dimensional basic algebra over a real closed field k. Then, for any pregeneric 
A-module G, there is a realization Z of G, over some algebra Γ ∈ R, which is free as a 
right Γ -module and such that the composition

Γ -Mod Z⊗Γ−−−−−→A-Mod LA−−→A-Mod

preserves indecomposables and isomorphism classes. Moreover, if Q denotes the skew 
field of fractions of Γ , then EndA(G)/ radEndA(G) ∼= Q.

Proof. If G is a pregeneric A-module with endolength d, then applying 10.6, we obtain a 
constructible ditalgebra Ai, a generically tame minimal algebra of infinite representation 
type Bi, a principal ideal domain Γi ∈ R, and a functor F̂i defined as the composition:

Γi-Mod Hi−−→Bi-Mod Ei−−→Ai-Mod Fi−−→A-Mod,

as described in 10.6, such that G ∼= F̂i(Qi), where Qi is the generic Γi-module.
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Then, the same argument given in the proof of 9.10 shows that Z = FiEi(Yi), where 
Yi is the Bi-Γi-bimodule defined in 9.7, is the wanted realization for G over the algebra 
Γ = Γi. �
11. Transition to finite-dimensional algebras

In this section we transfer our results from modules over constructible ditalgebras to 
modules over finite-dimensional algebras. We provide detailed proofs which follow the 
usual strategy.

Remark 11.1. Given finite-dimensional algebras Λ and Γ , and an equivalence functor 
F : Λ-Mod−−→Γ -Mod, it is well known that F preserves the property of having finite 
endolength and that there is a positive integer bF such that

endol
(
F (M)

)
≤ bF × endol(M), for any M ∈ Λ-Mod.

This was used by Crawley-Boevey in [9]. We include here a simple proof of this fact (the 
statement [6], (29.8)(1) is incorrect).

By Morita’s Theorem, we may assume that F = P ⊗Λ −, for some Γ -Λ-bimodule P
which is finitely generated projective as a Λ-module. Then, there is an epimorphism 
Λb −−→P of right Λ-modules. Assume that M ∈ Λ-Mod has finite endolength and 
make E := EndΛ(M)op. Then, we have an epimorphism Λb ⊗Λ M −−→P ⊗Λ M of right 
E-modules. Moreover, since F is full and faithful, we get the first equality in the follow-
ing: endol(P ⊗Λ M) = �E(P ⊗Λ M) ≤ b × �E(M) = b × endol(M).

Similarly, one shows that dimk F (N) ≤ bF × dimk N , for any N ∈ Λ-Mod.

Theorem 11.2. Let Λ be a generically tame finite-dimensional algebra over a real closed 
field k and let d be a non-negative integer. Then, there is a finite sequence of princi-
pal ideal domains Γ1, . . . , Γm ∈ R, and Λ-Γi-bimodules Z1, . . . , Zm, which are finitely 
generated as right Γi-modules, satisfying the following:

1. The functor Ui := Zi⊗Γi
− : Γi-Mod−−→Λ-Mod preserves indecomposables, generic 

modules, and isomorphism classes. Moreover, if Qi is the skew field of fractions of Γi, 
then EndΛ(Ui(Qi))/ radEndΛ(Ui(Qi)) ∼= Qi.

2. For each generic Λ-module G with endol(G) ≤ d there is a unique i ∈ [1, m] such 
that G ∼= Zi⊗Γi

Qi, where Qi is the generic Γi-module. Moreover, Zi is a realization 
of G over Γi.

3. Almost every indecomposable Λ-module M with dimk M ≤ d is isomorphic to 
Zi ⊗Γi

N , for some i ∈ [1, m] and some N ∈ Γi-mod.
4. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-

posable modules in Γi-mod and Γj-mod, respectively, such that Zi⊗Γi
Nu

∼= Zj⊗Γj
Mu

for all u ∈ U , then i = j.
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Proof. We first show that we can assume that Λ is a basic algebra. Indeed, assume 
the theorem holds for basic algebras, assume Λ is not basic and take d ≥ 0. Con-
sider a basic finite-dimensional k-algebra Λ′ which is Morita equivalent to Λ. Then, we 
know that Λ′ is generically tame. Consider a Λ-Λ′-bimodule P , finitely generated pro-
jective by the right which realizes the equivalence P ⊗Λ′ − : Λ′-Mod−−→Λ-Mod. Call 
Θ : Λ-Mod−−→Λ′-Mod its quasi inverse. From 11.1, this equivalence preserves generic 
modules and there is a constant bΘ such that for any generic Λ-module G we have 
endol(Θ(G)) ≤ bΘ × endol(G), and dimk Θ(M) ≤ bΘ × dimk M , for any M ∈ Λ-mod.

Make d′ := bΘ × d. Then, by assumption, there are algebras Γ1, . . . , Γm ∈ R and 
Λ′-Γi-bimodules Z ′

1, . . . , Z
′
m, which are finitely generated as right Γi-modules, satisfying 

the following:

1’. The functor U ′
i := Z ′

i⊗Γi
− : Γi-Mod−−→Λ′-Mod preserves indecomposables, generic 

modules, and isomorphism classes. Moreover, if Qi is the skew field of fractions of 
Γi, then EndΛ′(U ′

i(Qi))/ radEndΛ′(U ′
i(Qi)) ∼= Qi.

2’. For each generic Λ′-module G′ with endol(G′) ≤ d′, there is a unique i ∈ [1, m] such 
that G′ ∼= Z ′

i⊗Γi
Qi, where Qi is the generic Γi-module. Moreover, Z ′

i is a realization 
of G′ over Γi.

3’. Almost every indecomposable Λ′-module M with dimk M ≤ d′ is isomorphic to Z ′
i⊗Γi

N , for some i ∈ [1, m] and some N ∈ Γi-mod.
4’. If {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-isomorphic indecom-

posable modules in Γi-mod and Γj-mod, respectively, such that Z ′
i⊗Γi

Nu
∼= Z ′

j⊗Γj
Mu

for all u ∈ U , then i = j.

Consider, for each i, the Λ-Γi-bimodule Zi := P ⊗Λ′ Z ′
i. Since P is a finitely generated 

projective right Λ′-module, each bimodule Zi is finitely generated as a right Γi-module. 
It follows that items 1 to 4 hold for Λ with the given bimodules Z1, . . . , Zm. Moreover, 
from 2’ and 4.19, we know that Zi is a realization of G over Γi in item 2.

From now on, we assume that our given finite-dimensional algebra Λ is basic. Since 
k is a perfect field, the algebra Λ splits over its radical J and, therefore, its Drozd’s 
ditalgebra D := DΛ is admissible. By definition, D is constructible from the generically 
tame algebra Λ. Consider the splitting Λ = S ⊕ J over the radical J of Λ. Apply 10.6
to the ditalgebra D and the integer d′ := (1 + dimk Λ) dimk Λ × d to obtain the corre-
sponding constructible ditalgebras A1, . . . , Am and generically tame minimal algebras 
of infinite representation type B1, . . . , Bm, where each Bi is an initial subalgebra of Ai, 
and the family of principal ideal domains Γ1, . . . , Γm ∈ R, and the corresponding family 
of functors F̂i : Γi-Mod−−→D-Mod such that 10.6 (1)–(5) hold for D and d′.

For a fixed i ∈ [1, m], adopt the notation A = Ai = Dz1···zn . Then, we have that the 
functor F̂i is isomorphic to the composition:

Γi-Mod Hi−−→Bi-Mod Ei−−→Dz1···zn -Mod Fi=F z1 ···F zn

−−−−−−−−−→D-Mod.
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Here Hi = Yi ⊗Γi
−, where Yi is a Bi-Γi-bimodule, free of finite rank as a right 

Γi-module, as in 9.7. Hence the A-Γi-bimodule Ei(Yi) is free finitely generated by the 
right. We have the equality of functors LA(Ei(Yi) ⊗Γi

−) = Ei(Yi ⊗Γi
−) and we can 

apply [6], (22.7), to obtain that FiEi(Yi) is a D-Γi-bimodule projective by the right and 
the composition of the functor Ei(Yi) ⊗Γi

− with the restriction A-Mod−−→D-Mod of 
Fi is given by the tensor FiEi(Yi) ⊗Γi

−. Notice that F̂i
∼= LD(FiEi(Yi) ⊗Γi

−) and recall 
that it preserves isomorphism classes, indecomposables, and pregeneric modules.

Consider the usual equivalence functor ΞΛ : D-Mod−−→P1(Λ) and, for i ∈ [1, m], 
set Zi := Z ⊗D FiEi(Yi), where Z is the transition bimodule associated to Λ, as in 
[6], (22.18). Then, each Zi is finitely generated over Γi by construction.

For each i, denote by Ui the composition

Γi-Mod F̂i−−→D-Mod ΞΛ−−→P1(Λ) Cok−−→Λ-Mod,

which is, by [6], (22.18), naturally isomorphic to

CokΞΛLD
(
FiEi(Yi) ⊗Γi

−
) ∼= Z ⊗D FiEi(Yi) ⊗Γi

− = Zi ⊗Γi
−.

The proof of the first part of (1), which uses [6], (22.20), is the same as the proof of 
the same item of [4], (10.2), so we skip the argument here.

We have Ui(Qi) ∼= Zi ⊗Γi
Qi

∼= CokΞΛF̂i(Qi). As in the proof of 9.10, using 9.9 and 
[6], (31.6), we obtain

EndΛ(Ui(Qi))/ radEndΛ(Ui(Qi)) ∼= EndD(F̂i(Qi))/ radEndD(F̂i(Qi))
∼= EndΓi

(Qi)/ radEndΓi
(Qi) ∼= Qop

i
∼= Qi.

(2): Let G be a generic Λ-module with endol(G) ≤ d and take H ∈ D-Mod with 
CokΞΛ(H) ∼= G. From [4], (4.4)(3), we obtain

endol(H) ≤ (1 + dimk Λ) × endol(G) ≤ d′.

From 10.6, we know that for each such pregeneric D-module H, we have that H ∼=
F̂i(Qi) in A-Mod, for a unique i ∈ [1, m], where Qi is the generic Γi-module. Hence, 
G ∼= CokΞΛ(H) ∼= CokΞΛF̂i(Qi) ∼= Zi ⊗Γi

Qi. As in the proof of 10.7, we know that 
F̂i(Γi) is a realization of H over Γi. From 4.14, we get that Zi is a realization of G
over Γi.

(3): Similarly, from [4], (4.4)(2), if M is an indecomposable Λ-module with dimk M ≤ d

and L ∈ D-Mod satisfies CokΞΛ(L) ∼= M , then dimk L ≤ d′. From 10.6, we know that 
for almost every such modules L, we have that L ∼= F̂i(N), for some i ∈ [1, m] and 
N ∈ Γi-mod. Hence, M ∼= CokΞΛ(L) ∼= CokΞΛF̂i(N) ∼= Zi ⊗Γi

N .
(4): Assume that {Nu}u∈U and {Mu}u∈U are infinite families of pairwise non-

isomorphic indecomposable modules in Γi-mod and Γj-mod, respectively, such that 
CokΞΛF̂i(Nu) ∼= CokΞΛF̂j(Mu), for all u ∈ U . We already know that ΞΛF̂i(Nu),
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ΞΛF̂j(Mu) ∈ P2(Λ). Therefore, the existence of an isomorphism CokΞΛF̂i(Nu) ∼=
CokΞΛF̂j(Mu) in Λ-Mod, together with [6], (18.10)(3), imply that F̂i(Nu) ∼= F̂j(Mu), 
for u ∈ U . From 10.6(4), we get i = j. �
Remark 11.3. Whenever Γ is a centrally bounded principal ideal domain, as in [4], (6.3), 
and f is a central non-zero element of Γ , the central localization Γf , on the multiplicative 
subset {f i | i ≥ 0}, is again a centrally bounded principal ideal domain, see [18], §1.10. 
Moreover, if 0 �= f ∈ Γ is central, the morphism of Γ -modules μf : Γ/Γp −−→Γ/Γp in-
duced by multiplication by f is invertible (that is non-zero, since Γ/Γp is simple) for any 
atom p not similar to any atom in the atomic decomposition of f in Γ , see [15], (1.2.9). 
Thus, almost every simple Γ -module is a simple Γf -module too. This implies that the 
finite-length indecomposable Γf -modules are obtained from those of Γ by elimination of 
a finite number of tubes, see [4], (6.5).

Theorem 11.4. Let Λ be a generically tame finite-dimensional algebra over a real closed 
field k. Then,

1. For any generic Λ-module G, there is a realization Z of G over some algebra Γf , 
where Γ ∈ R and f is a non-zero central element of Γ , such that Z is a right 
Γf -module free of finite rank, and the functor Z ⊗Γf

− : Γf -Mod−−→Λ-Mod pre-
serves indecomposables and isomorphism classes.

2. For each d ∈ N, there are generic Λ-modules G1, . . . , Gm and, for each i ∈ [1, m], 
a realization Zi of Gi over some Γi ∈ R, such that: for almost all indecomposable 
Λ-module M with dimk M ≤ d, we have an isomorphism M ∼= Zi ⊗Γi

N , for some 
i ∈ [1, m] and some indecomposable N ∈ Γi-mod.

Proof. (1): Given a generic Λ-module G, say of endolength d, we can apply 11.2 to obtain 
a principal ideal domain Γ ∈ R and a Λ-Γ -bimodule Z ′ which is finitely generated as 
a right Γ -module such that Z ′ ⊗Γ − : Γ -Mod−−→Λ-Mod preserves indecomposability 
and isomorphism classes and G ∼= Z ′ ⊗Γ Q, where Q is the skew field of fractions 
of Γ . Moreover, Z ′ is a realization of G over Γ . Then, we have the exact sequence of 
Λ-Γ -bimodules 0 → tZ ′ → Z ′ → Z ′/tZ ′ → 0, where tZ ′ denotes the torsion submodule 
of the right Γ -module Z ′ and Z ′/tZ ′ is a free right Γ -module of finite rank (say r). By 
[8], §8.2, 2.4, since tZ ′ is finitely generated, it is a finite direct sum of torsion cyclic 
modules. But Γ is a right Ore domain, therefore tZ ′ has a non-zero annihilator. Since Γ
is a centrally bounded principal ideal domain, as in [4], (6.3), we know there is a non-zero 
central element f ∈ Γ which annihilates tZ ′. The right Γf -module Z := Z ′ ⊗Γ Γf

∼=
(Z ′/tZ ′) ⊗Γ Γf is free of rank r. Moreover, G ∼= Z ′ ⊗Γ Q ∼= Z ′ ⊗Γ Γf ⊗Γf

Q = Z ⊗Γf
Q

and, therefore, endol(G) = r = dimQ G. Thus, Z is a realization of G over Γf . Finally, 
note that Z ⊗Γf

− is the composition of Z ′ ⊗Γ − with Γf ⊗Γf
−, and both of them 

preserve indecomposables and isomorphism classes.
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(2): Given d ∈ N, apply 11.2 to obtain algebras Γ1, . . . , Γm ∈ R and, for each i ∈ [1, m], 
a Λ-Γi-bimodule Zi which is finitely generated as a right Γi-module such that 11.2(3) 
holds. For i ∈ [1, m], make Gi := Zi ⊗Γi

Qi, where Qi is the skew field of fractions of Γi. 
Then, from 11.2(1) and the proof of 11.2(2), the module Gi is generic and the bimodule 
Zi is a realization for Gi over Γi, for each i ∈ [1, m]. Finally, we can apply 11.2(3), to 
finish our proof. �
Acknowledgments

The second author acknowledges the support of Promep grant Algebra Mexicana.

References

[1] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Grad. Texts in Math., vol. 13, 
Springer, 1974.

[2] M. Auslander, Representation theory of Artin algebras II, Comm. Algebra 1 (4) (1974) 269–310.
[3] R. Bautista, E. Pérez, L. Salmerón, On restrictions of indecomposables of tame algebras, Colloq. 

Math. 124 (2011) 35–60.
[4] R. Bautista, E. Pérez, L. Salmerón, On generically tame algebras over perfect fields, Adv. Math. 

231 (2012) 436–481.
[5] R. Bautista, E. Pérez, L. Salmerón, On restrictions of generic modules of tame algebras, Cent. Eur. 

J. Math. 11 (3) (2013) 423–434.
[6] R. Bautista, L. Salmerón, R. Zuazua, Differential Tensor Algebras and Their Module Categories, 

London Math. Soc. Lecture Note Ser., vol. 362, 2009.
[7] A. Can, J. De-Vicente, E. Pérez, Differential tensor algebras and endolength vectors, Colloq. Math. 

136 (1) (2014) 75–98.
[8] P.M. Cohn, Free Rings and Their Relations, London Math. Soc. Monogr. Ser., vol. 19, Academic 

Press, 1985.
[9] W.W. Crawley-Boevey, Tame algebras and generic modules, Proc. Lond. Math. Soc. (3) 63 (1991) 

241–265.
[10] W.W. Crawley-Boevey, Modules of finite length over their endomorphism rings, in: S. Brenner, H. 

Tachikawa (Eds.), Representations of Algebras and Related Topics, in: London Math. Soc. Lecture 
Note Ser., vol. 168, 1992, pp. 127–184.

[11] V. Dlab, C.M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. 
Soc. 173 (1976).

[12] V. Dlab, C.M. Ringel, Real subspaces of a quaternion vector space, Canad. J. Math. XXX (6) (1978) 
1228–1242.

[13] E. Guerrero, J. De-Vicente, E. Pérez, On the endomorphism rings of generic modules of tame 
triangular matrix algebras over real closed fields, Aport. Mat. Memorias Soc. Mat. Mex. 45 (2012) 
17–53.

[14] N. Jacobson, Basic Algebra II, W.H. Freeman and Co., New York, 1980.
[15] N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer, 2010.
[16] S. Kasjan, Base field extensions and generic modules over finite dimensional algebras, Arch. Math. 

77 (2001) 155–162.
[17] T.Y. Lam, A First Course in Noncommutative Rings, second edition, Grad. Texts in Math., vol. 131, 

Springer, New York, 2001.
[18] L. Rowen, Ring Theory (Student Edition), Academic Press Inc., San Diego, 1991.

http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4146s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4146s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib414949s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42505331s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42505331s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42505332s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42505332s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42505333s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42505333s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42535As1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib42535As1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434450s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434450s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib43626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib43626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434232s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434232s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434234s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434234s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib434234s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib445230s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib445230s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib44527265616C6573s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib44527265616C6573s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib474450s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib474450s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib474450s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4A33s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4A32s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4B32s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4B32s1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4Cs1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib4Cs1
http://refhub.elsevier.com/S0021-8693(14)00417-7/bib526F77656Es1

	Generic modules of tame algebras over real closed ﬁelds
	1 Introduction
	2 Constructibility and pregeneric modules
	3 Scalar restriction and pregeneric modules
	4 Endolength and realizations
	5 Restrictions and endolength
	6 Finite endolength and decompositions
	7 Restrictions over real closed ﬁelds
	8 Reduction functors and norms
	9 Families of modules
	10 Reduction to minimal algebras
	11 Transition to ﬁnite-dimensional algebras
	Acknowledgments
	References


