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1. Introduction

In this article, we assume that the ground field k is algebraically closed. All our algebras Λ are associative k-algebraswith unit element, and Λ-Mod denotes the category of (left) Λ-modules.The following situation arises frequently in the representation theory of algebras. Let Λ be a finite-dimensional algebraand take any idempotent e0 of Λ. If we make Λ0 = e0Λe0, we have the standard restriction functor ρ : Λ-Mod→ Λ0-Mod,where ρ(M) = e0M, for any M ∈ Λ-Mod. This functor admits as a left adjoint the functor tens = Λe0⊗Λ0− : Λ0-Mod→Λ-Mod, which is full and faithful, see for instance [1, § I.6].Let us recall some terminology from [2]. Given a finite-dimensional basic algebra Λ, over our algebraically closed field k ,there is a semisimple subalgebra S of Λ such that Λ admits a decomposition Λ = S
⊕rad Λ of S-S-bimodules. Considera decomposition 1 = ∑

e∈E e of the unit element of S as a sum of central primitive orthogonal idempotents in S, andlet E0 be a subset of E . Then, E0 is called convex if and only if, whenever e′′Λe′Λe 6= 0 with e′′, e ∈ E0 and e′ ∈ E , wehave that e′ ∈ E0.
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On restrictions of generic modules of tame algebras

Given a convex subset E0 of E , we are interested in the algebra Λ0 = e0Λe0, where e0 = ∑
e∈E0 e, and we want toestablish some relations between the categories Λ-mod and Λ0-mod. Notice that Λ0 is also a basic finite-dimensionalalgebra which splits over its radical: Λ0 = S0⊕rad Λ0, where S0 = e0Se0 and rad Λ0 = e0(rad Λ)e0. The algebra Λ0 iscalled convex in Λ if E0 is a convex subset of E . Notice that our definition of convexity differs from the one commonlyused in the theory of locally bounded categories.Given a convex algebra Λ0 in Λ, the morphism ψ : Λ → Λ0 given by ψ(λ) = e0λe0, λ ∈ Λ, is a morphism of algebras.Therefore, we can consider the Λ0-Λ-bimodule Λ0 and a new type of natural restriction functor

res = Λ0⊗Λ− : Λ-Mod→ Λ0-Mod.
We denote by P(Λ) and P(Λ0) the categories of morphisms between projective Λ-modules and projective Λ0-modules,respectively. Then, the functors tens and res induce functors Tens : P(Λ0) → P(Λ) and Res: P(Λ) → P(Λ0) such thatres Cok ∼= Cok0 Res and Cok Tens ∼= tens Cok0, where Cok : P(Λ)→ Λ-Mod and Cok0 : P(Λ0)→ Λ0-Mod are the cokernelfunctors. Moreover, res tens ∼= 1Λ0-Mod
and, then, given M ∈ Λ-Mod, we have that M ∼= tens resM if and only if M ∼= tensM ′, for some M ′ ∈ Λ0-Mod, see [2].We keep the notation introduced before for the rest of this paper.Recall also that, given a Λ-module G, by definition, the endolength of G is its length as a right EndΛ(G)op-module.The module G is called generic if it is indecomposable, of infinite length as a Λ-module, but with finite endolength.The algebra Λ is called generically tame if, for each d ∈ N, there is only a finite number of isomorphism classes ofgeneric Λ-modules of endolength d. This notion was introduced by Crawley-Boevey in [5], providing a new definition oftameness, which coincides with the usual notion of tameness for finite-dimensional algebras over algebraically closedfields, but which makes sense for arbitrary algebras.We will show that given a convex algebra Λ0 in the tame algebra Λ and any generic Λ-module G, the Λ0-module resGhas finite endolength and either it is generic, or it is a direct sum of some finite-dimensional Λ0-modules. This is ourCorollary 4.3; see also the more complete Theorem 4.2.This theorem is proved using matrix problem methods and we resort to the ditalgebra language of [4]. It is obtainedas a consequence of the discussion of parametric families of modules through realizations proposed by Crawley-Boeveyin [5] and the study of extension/restriction interactions between module categories over a ditalgebra and a propersubditalgebra presented in [2].Our Theorem 3.4 for ditalgebras has its own importance because it can be used to study relations of the generic moduleswith bounded endolength over a finite-dimensional algebra Λ, with the generic modules over hereditary algebras. Thiscan be done in the same way that [2] was used in [3] to relate the corresponding finite-dimensional indecomposableswith bounded dimension.
2. Families of modules

As usual, given any k-ditalgebra A, we denote by A-Mod the category of A-modules, see [4, 2.2]. Recall from [3] thefollowing definitions.
Definition 2.1.Let A be a layered ditalgebra, with layer (R,W ), see [4, § 4]. Given M ∈ A-Mod, denote by EM = EndA(M)op itsendomorphism algebra. Then, M admits a structure of R-EM-bimodule, where m · (f0, f1) = f0(m), for m ∈ M and(f0, f1) ∈ EM . By definition, the endolength of M, denoted by endolM, is the length of M as a right EM-module.A module M ∈ A-Mod is called pregeneric if M is indecomposable, with finite endolength, but with infinite dimensionover the ground field k .
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If B is any k-algebra, we have the corresponding regular ditalgebra B with layer (B, 0). Then, the categories B-Modand B-Mod can be identified canonically. If the algebra B is finite-dimensional, the notion of pregeneric B-modulecoincides with the notion of generic B-module. For infinite-dimensional algebras, this is not always the case. A recurrentargument in the reduction techniques used to study modules over finite-dimensional algebras Λ, passes from the modulecategory of a ditalgebra A, after some reduction process, to the category of projective presentations, and then to Λ-Mod.This process maps pregeneric A-modules onto generic Λ-modules, see [3].
Notation 2.2.Throughout this work, given a ditalgebra A = (T , δ), we denote with a roman A the subalgebra [T ]0 of degree zeroelements of the underlying graded algebra T of A, see [4, § 1]. Then, the categories A-Mod and A-Mod share the sameclass of objects, but there are more morphisms in A-Mod. There is a canonical embedding functor LA : A-Mod→ A-Mod,which is the identity on objects and maps each f0 ∈ HomA(M,N) onto LA(f0) = (f0, 0).It may be the case that for a layered ditalgebra A, an A-module M admits a non-trivial decomposition in A-Mod butis indecomposable in A-Mod. Thus, it is not always true that the functor LA preserves indecomposability.
Reminder 2.3.In this work, we have to deal mainly with seminested ditalgebras A. This means that A admits a layer (R,W ) such that:
R is a minimal k-algebra, the layer (R,W ) is triangular, the R-R-bimodule W1 is freely generated by a finite directedsubset B1 of W1, and the bimodule filtration

W 00 ⊆ W 10 ⊆ . . . ⊆ W `00 = W0
corresponding to W0 in the triangularity conditions for the layer, see [4, 5.1], is freely generated by a set filtration

B00 ⊆ B10 ⊆ . . . ⊆ B`00 = B0
of a finite directed subset B0 of W0. This means that each W i0 is freely generated by Bi0, as in [4, 23.2].Recall that a rational algebra Γ is, by definition, a finitely generated localization of the polynomial algebra k [x]. Bydefinition, a minimal algebra R is a finite product of the form k × · · · ×k ×Γ1× · · · ×Γt , where Γ1, . . . ,Γt are rationalalgebras.There is a bigraph B attached naturally to any seminested ditalgebra A, see [4, 23.9]. The points in B are in bijectivecorrespondence with the indecomposable factors of R , and the marked points are by definition those corresponding tofactors which are rational algebras. The sets B0 and B1 are, respectively, the sets of solid arrows and dashed arrows ofthe bigraph B (and of the seminested ditalgebra A). The bigraph B of A allows us to describe the category A-Mod asa category of representations of the bigraph, see [4, 23.10].Finally, we recall that a ditalgebra A over an algebraically closed field k is tame if, for every d ∈ N, there is a finitecollection {(Γi, Zi)}ni=1, where Γi is a rational algebra and Zi is an A-Γi-bimodule which is free of finite rank as a rightΓi-module, such that, for every indecomposable M ∈ A-Mod with dimk M = d, there are an i ∈ [1, n] and a simpleΓi-module S with Zi⊗ΓiS ∼= M in A-Mod. There are various reformulations of this definition, see [4, § 27].
In the following, we adapt to the context of tame seminested ditalgebras some definitions and results on tame finite-dimensional algebras due to Crawley-Boevey, see [5, § 5]. Some of these adaptations are derived directly from hisresults (this is the case of Proposition 2.11); some others use his arguments rephrased for ditalgebras in [4]. Given arational algebra Γ, we denote by Irred Γ a complete set of inequivalent irreducible elements of Γ.
Definition 2.4.Let A be a tame seminested ditalgebra over the field k , as in [4, 23.5]. If G is a pregeneric A-module, a realization Z
for G over the rational algebra Γ = k [x]f is an A-Γ-bimodule Z , finitely generated as a right Γ-module, such that

G ∼= Z ⊗Γk(x) in A-Mod and endol G = dimk(x)(Z ⊗Γk(x)).
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Remark 2.5.If A is a layered k-ditalgebra and G ∼= Z ⊗Γk(x) in A-Mod, for some A-Γ-bimodule Z , where Γ is a rational algebra,then we have the canonical embeddings of k-algebras
k(x) ⊆ EndAk(x) (Z ⊗Γk(x)) ⊆ EndA(Z ⊗Γk(x)) ⊆ EndA(Z ⊗Γk(x)),

where Ak(x) denotes the extended algebra A⊗k k(x), and hence endol G = endol (Z ⊗Γk(x)) ≤ dimk(x)(Z ⊗Γk(x)).
Theorem 2.6.
Let A be a tame seminested ditalgebra and d ∈ N. Then, there are a minimal ditalgebra B, see [4, 23.5], and an
A-B-bimodule Yd, which is finitely generated as a right B-module, such that, for any G ∈ A-Mod with endolG ≤ d,
there are a B-E-bimodule N with finite length as a right E-module and an isomorphism G ∼= Yd⊗BN in A-Mod, where
E = EndA(G)op. Moreover, there is a full and faithful functor F : B-Mod → A-Mod such that the following diagram
commutes up to isomorphism:

B-Mod LB //

Yd⊗B−

��

B-Mod
F
��

A-Mod LA // A-Mod,
where LA and LB denote the canonical embeddings.

Proof. Apply [4, 28.22] to any given d, to obtain a minimal ditalgebra B and a reduction functor F : B-Mod→ A-Modsuch that, for any k-algebra E , the induced functor FE : B-E-Mod → A-E-Mod is length controlling and, for any
A-E-bimodule G with length ≤ d, there is a B-E-bimodule N such that G ∼= FE (N). By definition, a reduction functor,see [4, 25.10], is a composition of functors of type Fa, F r , Fd, Fe and Fu, corresponding to ditalgebra operations oftype: absorption of a loop, as in [4, 23.16], regularization, as in [4, 23.15], deletion of idempotents, as in [4, 23.14], edgereduction, as in [4, 23.18], and unravelling, as in [4, 23.23], respectively. The functors Fa, F r and Fd are full and faithful,by [4, 8.20], [4, 8.19] and [4, 8.17], respectively. The functors Fe and Fu are full and faithful because they are of type FX ,where X is a complete admissible module, by [4, 17.12]. It follows that any reduction functor is full and faithful, and sois F . From [4, 22.7], we get that Yd = F (B) has the structure of an A-B-bimodule, finitely generated as a right B-module,and the above diagram commutes.Assume that G is an A-module with endolength ≤ d. If we make E = EndA(G)op, then G is an A-E-bimodule withlength ≤ d as a right E-module, and has the form G ∼= FE (N) for some N ∈ B-E-Mod with finite length.
Proposition 2.7.
Let A be a tame seminested ditalgebra over the algebraically closed field k and take d ∈ N. Then, if B and Yd are the
minimal k-ditalgebra and the A-B-bimodule obtained by applying Theorem 2.6, with the integer d, we have:(i) The A-modules of the form G = Yd⊗BQz , where Qz is some principal generic B-module, see [4, 31.3(1)], are

pregeneric, and satisfy EndA G
/ rad EndA G ∼= k(x).

(ii) Any pregeneric A-module of endolength ≤ d arises this way.

Proof. (i) For any marked point z of the minimal ditalgebra B, denote by Qz the principal generic B-module at thepoint z. Thus, Bez = k [x]f(x) and Qz = k(x) has a natural structure of a B-k(x)-bimodule. Consider the reduction functor
F : B-Mod→ A-Mod of the last theorem, then G = Yd⊗BQz

∼= F (Qz) is an Ak(x)-module, finite-dimensional over k(x).Thus, from Remark 2.5, the A-module G has finite endolength. Proceeding as in the proof of [4, 31.7], we obtain (i).(ii) Let G be a pregeneric A-module with endolG ≤ d. By assumption, we already know that G ∼= Yd⊗BN, for some
B-E-bimodule N, where E = EndA(G)op. Then, N is a generic B-module and so N ∼= Qz , for some marked point z of B,by [4, 31.3].
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Corollary 2.8.
Assume that A is a seminested ditalgebra over the algebraically closed field k. Then, A is tame if and only if it is
pregenerically tame.

Proof. From Drozd’s theorem, A is tame if and only if A is not wild, see [6] and [4, 27.10]. Then, [3, 2.9] gives that
A is tame whenever it is pregenerically tame. Finally, by Proposition 2.7, the tameness of A implies its pregenerictameness.
Remark 2.9.Let A be a tame seminested k-ditalgebra and G ∼= Z ⊗Γ k(x) in A-Mod, as in Remark 2.5. Then, from Proposition 2.7,it follows that endol G = dimk(x)(Z ⊗Γk(x)).In particular, the last equality in the definition of realization can be eliminated.
Theorem 2.10.
Let A be a tame seminested ditalgebra. Then:(i) For any pregeneric A-module G, there is a realization Z of G, over some rational algebra Γ, which is free as a

right Γ-module and such that the composition

Γ-Mod Z ⊗ Γ−−−−−→ A-Mod LA−−−→ A-Mod
preserves indecomposables and isomorphism classes.

(ii) For each d ∈ N, there are pregeneric A-modules G1, . . . , Gm and, for each i ∈ [1, m], a realization Zi of Gi
over a rational algebra Γi, such that, for almost all indecomposable A-modules M with dimk M ≤ d, we have an
isomorphism M ∼= Zi⊗ΓiΓi/(pn) in A-Mod for some i ∈ [1, m], p ∈ Irred Γi, and n ∈ N.

Proof. (i) If G is a pregeneric A-module with endolength d, then applying Theorem 2.6, we obtain a minimalditalgebra B, a reduction functor F : B-Mod → A-Mod, and an A-B-bimodule Z such that LA(Z ⊗B−) ∼= FLB. Fromthe last proposition, we know that G ∼= F (Qz), for some principal generic B-module Qz . Consider the rational algebraΓz = Bez = k [x]f . Then, from [4, 22.7], we have the following diagram, which commutes up to isomorphism:
Γz-Mod Γz⊗Γz− // B-Mod LB //

F
��

B-Mod
F
��Γz-Mod F (Γz )⊗Γz− // A-Mod LA // A-Mod.

From [4, 31.6], LB preserves indecomposables and isomorphism classes. Hence, the composition FLB(Γz⊗Γz−) preservesindecomposability and isomorphism classes and, therefore, so does the lower row of the diagram LA(F (Γz)⊗Γz−).Moreover, since F is a reduction functor, F (Γz) is an A-Γz-bimodule which is projective and finitely generated by theright. Hence, since Γz is a principal ideal domain, F (Γz) ∼= Z ⊗BΓz ∼= Zez is in fact a free right Γz-module of finite rank.We have in A-Mod the isomorphisms
F (Γz)⊗Γzk(x) = LA

(
F (Γz)⊗ΓzQz

) ∼= F
(
LB(Γz⊗ΓzQz)) ∼= F (Qz) ∼= G

and dimk(x)(F (Γz)⊗Γzk(x)) = rkF (Γz) = endol G, see the proof of [4, 31.8]. Thus, the bimodule F (Γz) is the wantedrealization for G over Γz .(ii) From [4, 29.6], the reduction functor which appeared in Theorem 2.6 also satisfies that, for any indecomposable
A-module M with dimk M ≤ d, there is a B-module N with F (N) ∼= M. Moreover, almost any such finite-dimensional
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indecomposable B-module N is of the form N ∼= Γz/(pi), for some marked point z of B, some p ∈ Irred Γz , and i ∈ N.Thus, with the notation of the last argument, for almost any indecomposable A-module M with dimk M ≤ d, there issuch an N ∼= Γz/(pi), and M ∼= Zez⊗N ∼= Zez⊗Γz/(pi), where Zez is a realization over the rational algebra Γz of thepregeneric A-module Gz = Z ⊗BQz .
Proposition 2.11.
Let Λ be a tame finite-dimensional basic algebra over the algebraically closed field k and consider its Drozd’s ditalge-
bra D, as in [4, 19.1]. Let Z1 and Z2 be realizations of the pregeneric D-modules G1 and G2, over the rational algebras Γ1
and Γ2, respectively. If there is an infinite subset P of Irred Γ2 such that, for all p ∈ P, we have

Z2⊗Γ2Γ2/(pip ) ∼= Z1⊗Γ1Γ1/(qp) in D-Mod,
for some qp ∈ Γ1 and ip ∈ N, then G2 ∼= G1.
Proof. Consider the composable functors D-Mod ΞΛ−−→ P1(Λ) Cok−−→ Λ-Mod, where ΞΛ is the usual equivalence functorof [4, 19.8] and Cok is the cokernel functor, see [4, 18.10]. From [4, 22.18 (2)], if Z is the transition bimodule, we have

Z ⊗DZ2⊗Γ2 Γ2/(pip ) ∼= Cok ΞΛ[Z2⊗Γ2 Γ2/(pip )] ∼= Cok ΞΛ[Z1⊗Γ1 Γ1/(qp)] ∼= Z ⊗D Z1⊗Γ1 Γ1/(qp).
Moreover, for i ∈ [1, 2], the relation Gi

∼= Zi⊗Γi k(x) implies that
Cok ΞΛ(Gi) ∼= Cok ΞΛ [Zi⊗Γi k(x)] ∼= Z ⊗DZi⊗Γi k(x),

where the last term is finite-dimensional over k(x). Thus, Cok ΞΛ(Gi) is a generic Λ-module with realization Z ⊗DZiover the rational algebra Γi. From [5, 5.2 (4)], we obtain that Cok ΞΛ(G1) ∼= Cok ΞΛ(G2). Hence, G1 ∼= G2.
3. Pregeneric modules for Drozd’s ditalgebras

The proof of our main result relies on the following theorem, proved in [2]. It applies to tame seminested ditalgebraswith a proper subditalgebra. Let us recall some terminology from [4].
Definition 3.1.Let A = (T , δ) be any ditalgebra with layer (R,W ). Assume we have R-R-bimodule decompositions W0 = W ′0⊕W ′′0 and
W1 = W ′1⊕W ′′1 . Consider the subalgebra T ′ of T generated by R and W ′ = W ′0⊕W ′1. Then, A′ = [T ′]0 is freely generatedby the pair (R,W ′0). Let us also assume that δ(W ′0) ⊆ A′W ′1A′ and δ(W ′1) ⊆ A′W ′1A′W ′1A′. Then, the differential δ on Trestricts to a differential δ ′ on the algebra T ′, and we obtain a new ditalgebra A′ = (T ′, δ ′) with layer (R,W ′). A layeredditalgebra A′ is called a proper subditalgebra of A if it is obtained from an R-R-bimodule decomposition of W , as wehave just described.A proper subditalgebra A′ of a triangular ditalgebra A is called initial when its triangular filtrations coincide with thefirst terms of the triangular filtrations of A, see [4, 14.8]. The inclusion r : T ′ → T yields a morphism of ditalgebras
r : A′ → A and, hence, a restriction functor

RA
A′ = Fr : A-Mod→ A′-Mod.

The projection π : A = [T ]0 → [T ′]0 = A′ yields an extension functor

EA
A′ = Fπ : A′-Mod→ A-Mod.
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Theorem 3.2.
Assume that A′ is an initial subditalgebra of the tame seminested ditalgebra A, over the algebraically closed field k.
Then, for any d ∈ N, there is a finite family I(d) of indecomposable A′-modules such that, for any indecomposable
A-module M with dimk M ≤ d and M 6∼= EA

A′ (N) in A-Mod, for any N ∈ A′-Mod, the module RA
A′ (M) is isomorphic

in A′-Mod to a direct sum of modules in I(d).
The following lemma is another important ingredient of the proof of our main result.
Lemma 3.3.
Let A be a Roiter ditalgebra with layer (R,W ), where W1 is a finitely generated R-R-bimodule, over an algebraically
closed field, see [4, 5.5]. Assume that AX is obtained from A by reduction, using the A′-module X, where A′ is an
initial subditalgebra of A and X is a finite direct sum of pairwise non-isomorphic finite-dimensional indecomposable
A′-modules, see [4, 12.7–12.9]. Then:(i) The algebra Γ = EndA′ (X )op admits the splitting Γ = S⊕P, where P is the radical of Γ, and AX is a ditalgebra

with triangular layer (S,W X ).
(ii) Let FX : AX -Mod → A-Mod be the associated functor, as in [4, 12.10]. Then, the A-modules M of the form

M ∼= FX (N), for some (resp. finite-dimensional) N ∈ AX -Mod, are precisely the A-modules such that its restric-
tion RA

A′ (M) is isomorphic in A′-Mod to a (resp. finite) direct sum of direct summands of X.

Proof. (i) We know that A is a Roiter ditalgebra and, by [4, 12.3], so is A′. Therefore, since k is algebraicallyclosed, from [4, 17.3], the A′-module X is indeed admissible. Thus, AX and FX are defined. The module X is triangular,as in [4, 14.6], because S is semisimple. Hence, from [4, 14.10], the ditalgebra AX has triangular layer (S,W X ).(ii) This follows from [4, 25.5]. See the argument in the proof of [3, 7.3 (2)].
Theorem 3.4.
Let Λ be a tame finite-dimensional basic algebra over the algebraically closed field k and consider its Drozd’s dital-
gebra D. Assume that D′ is an initial subditalgebra of the tame seminested ditalgebra D and that ED

D′ (M) ∼= ED
D′ (N)

in D-Mod whenever M ∼= N in D′-Mod. Then, for any d ∈ N, there is a finite family I(d) of finite-dimensional
indecomposable D′-modules such that(i) for any indecomposable D-module M with dimk M ≤ d and M 6∼= ED

D′ (N) in D-Mod, for any D′-module N, the
module RD

D′ (M) is isomorphic in D′-Mod to a direct sum of modules of I(d);
(ii) for any pregeneric D-module G with endol G ≤ d and G 6∼= ED

D′ (H) in D-Mod, for any pregeneric D′-module H,
the module RD

D′ (G) is isomorphic in D′-Mod to a direct sum of modules of I(d).
Proof. From [4, 22.13], we know that D′ is also tame. Fix d ∈ N and apply Theorem 3.2 to D and D′, to obtain afinite set I(d) = {X1, . . . , Xt} of pairwise non-isomorphic finite-dimensional indecomposable D′-modules satisfying (i).Let G be a pregeneric D-module such that endol G ≤ d and G 6∼= E(H), for any pregeneric D′-module H.From (i) of Theorem 2.10 there is a realization Z of G over a rational algebra Γ, which is free finitely generated as aright Γ-module. It defines the infinite family of pairwise non-isomorphic indecomposable D-modules

{Z ⊗Γ Γ/(p) : p ∈ Irred Γ}.
If rk Z denotes the rank of Z as a free right Γ-module, then rk Z = dimk(x)(Z ⊗Γk(x)) = endol G ≤ d and, for each
p ∈ Irred Γ, we have that dimk (Z ⊗Γ Γ/(p)) ≤ d.
Then, for any p ∈ Irred Γ with Z ⊗ΓΓ/(p) 6∼= ED

D′ (N) in D-Mod, for any N ∈ D′-Mod, the module RD
D′ (Z ⊗ΓΓ/(p))is isomorphic in D′-Mod to a direct sum of modules in I(d). Consider the admissible D′-module X = ⊕t

i=1 Xi, theseminested ditalgebra DX , see [3, 3.4], and the associated full and faithful reduction functor FX : DX -Mod → D-Mod.Let us first show the following.
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Claim. There is no infinite subset P of Irred Γ such that, for all p ∈ P, there is Np ∈ D′-Mod with Z ⊗ΓΓ/(p) ∼= E(Np).
Proof of the claim. Assume that there is such a set P. Then, the tame seminested ditalgebra D′ admits an infinite family
{Np}p∈P of pairwise non-isomorphic indecomposable D′-modules with dimk Np ≤ d. Then, from (ii) of Theorem 2.10there are a pregeneric D′-module G′, a realization Z ′ of G′, over some rational algebra Γ′, and an infinite subset Qof Irred Γ′ such that, for any q ∈ Q, there are pq ∈ P and iq ∈ N with Z ′⊗Γ′ Γ′/(qiq ) ∼= Npq . Then, for all q ∈ Q,we have

Z ⊗Γ Γ/(pq) ∼= E(Npq ) ∼= E(Z ′⊗Γ′ Γ′/(qiq )) ∼= E(Z ′)⊗Γ′ Γ′/(qiq ).Moreover, E(G′) ∼= E(Z ′⊗Γ′ k(x)) ∼= E(Z ′)⊗Γ′ k(x). From Remark 2.9, we have that E(G′) is a pregeneric D-module withrealization E(Z ′) over Γ′. Then, from Proposition 2.11, we obtain that E(G′) ∼= G, contradicting our initial assumption.This ends the proof of our claim. �

Then, there are infinitely many elements p ∈ Irred Γ such that
Z ⊗Γ Γ/(p) 6∼= E(N) for any N ∈ D′-Mod.

Hence, there is an infinite subset P ⊆ Irred Γ such that, for any p ∈ P, the module RD
D′ (Z ⊗ΓΓ/(p)) is isomorphicin D′-Mod to a direct sum of direct summands of X . From Lemma 3.3, we know that, for each p ∈ P, there is a

DX -module Lp with Z ⊗Γ Γ/(p) ∼= FX (Lp).The tame seminested ditalgebra DX admits the infinite family {Lp}p∈P of pairwise non-isomorphic indecomposable
DX -modules with bounded dimension. From (ii) of Theorem 2.10, there are a pregeneric DX -module G′, a realization Z ′of G′, over some rational algebra Γ′, and an infinite subset Q of Irred Γ′ such that, for any q ∈ Q, there are pq ∈ P and
iq ∈ N with

Z ′⊗Γ′Γ′/(qiq ) ∼= Lpq .Thus, for q ∈ Q, we have
Z ⊗ΓΓ/(pq) ∼= FX (Lpq ) ∼= FX (Z ′⊗Γ′ Γ′/(qiq )) ∼= FX (Z ′)⊗Γ′ Γ′/(qiq ).

Moreover, FX (G′) ∼= FX (Z ′⊗Γ′ k(x)) ∼= FX (Z ′)⊗Γ′ k(x). From Remark 2.9, we obtain that FX (G′) is a pregeneric D-moduleand FX (Z ′) is a realization of FX (G′) over Γ′. Then, from Proposition 2.11, we obtain that FX (G′) ∼= G. Hence, fromLemma 3.3, the module RD
D′ (G) is a direct sum of direct summands of X in D′-Mod.

4. Main result for algebras

The first statement of the following theorem was proved in [2]. The proof of the fact that the same set I0(d) works for thesecond statement is somehow parallel to the proof given in [2, 4.1]. For the benefit of the reader, we provide a completeproof, after recalling some constructions from [2].
Reminder 4.1.Let D = (T , δ) be a seminested ditalgebra with layer (R,W ) and set of points P. Assume that D′ = (T ′, δ ′) is a propersubditalgebra of D associated to the R-R-bimodule decompositions W0 = W ′0⊕W ′′0 and W1 = W ′1⊕W ′′1 . Then, thesubditalgebra D′ is called convex if there is a subset P0 of P such that eW ′0e = W ′0 and eW ′1e = W ′1, where e is thecentral idempotent e = ∑x∈P0 ex of R . It follows that D′ is seminested.If D′ is a convex subditalgebra of the seminested ditalgebra D, the morphism of algebras η : T → T ′ determined bythe projection of R-R-bimodules W → W ′ is a morphism of ditalgebras η : D→ D′, which induces a restriction functor
Fη : D′-Mod → D-Mod with Fη(M) = ED

D′ (M), for M ∈ D′-Mod. Thus, ED
D′ (M) ∼= ED

D′ (N) in D-Mod whenever M ∼= Nin D′-Mod.Moreover, if we write f = 1− e, we get R = Re×Rf and an isomorphism of ditalgebras D′ ∼= De×Df , where De and
Df are ditalgebras with layers (Re,W ′) and (Rf, 0), see [2, 5.2]. In particular, the category Df-Mod can be identifiedwith Rf-Mod.
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Since D′ ∼= De×Df , we can consider the projection morphisms πe : D′ → De and πf : D′ → Df . The induced functors
Fe : De-Mod→ D′-Mod and F f : Df-Mod→ D′-Mod determine an equivalence of categories

De-Mod×Df-Mod Fe⊕F f−−−−−→ D′-Mod
described in [4, 10.3].Now, assume that Λ is a basic finite-dimensional algebra over the algebraically closed field k and Λ0 is a convex algebrain Λ. Then, there are a convex subditalgebra D′ of the Drozd ditalgebra D of Λ and a functor Ξ′ : D′-Mod → P1(Λ0)such that the following diagram commutes up to isomorphism:

D-Mod ΞΛ / /

RD
D′

��

P1(Λ) Cok //
Res
��

Λ-Mod
res
��

D′-Mod Ξ′ // P1(Λ0) Cok0 // Λ0-Mod,
where ΞΛ is the usual equivalence, see [4, 19.8], and Res is the restricted lifting of res, see [2, 2.1 and 5.3]. The functorΞ′ is constructed as the composition

D′-Mod H−→ De-Mod Fφ−−→ DΛ0-Mod ΞΛ0−−→ P1(Λ0),
where H is the projection, Fφ is the functor induced by an isomorphism of seminested ditalgebras φ : DΛ0 → De, andΞΛ0 is the usual equivalence.Let us also recall that, given the convex subditalgebra D′, we can modify the triangular filtrations of D, obtaining adifferent seminested ditalgebra D with the same underlying ditalgebra D, such that D′ is an initial convex subditalgebraof D. Thus, D and D coincide as ditalgebras and share the same layer (but with different triangular filtrations). Inparticular, we have that D-Mod = D-Mod and RD

D′ = RD
D′ . See [2, 5.4].

Theorem 4.2.
Assume that Λ is a tame finite-dimensional basic algebra over an algebraically closed field k. Suppose that Λ0 is a
convex algebra in Λ. Then, for any d ∈ N, there is a finite family I0(d) of finite-dimensional indecomposable Λ0-modules
such that(i) for any indecomposable Λ-module M with dimk M ≤ d and M 6∼= tensN, for any Λ0-module N, the module resM is

isomorphic to a direct sum of modules in I0(d);(ii) for any generic Λ-module G with endolG ≤ d and G 6∼= tensH, for any generic Λ0-module H, the module resG is
isomorphic to a direct sum of modules in I0(d).

Proof. We adopt the notations introduced in Reminder 4.1. Thus, D is the Drozd ditalgebra associated to thealgebra Λ. Since Λ is tame, from [4, 27.14], so are D and D (recall that D-Mod = D-Mod).Fix d ∈ N. Then, we apply Theorem 3.4 to d′ = (1+ dimk Λ)×d, to obtain a finite family I′(d′) of finite-dimensionalindecomposable D′-modules such that, for any pregeneric D-module H with endolH ≤ d′ and H 6∼= ED
D′ (H ′), for anypregeneric H ′ ∈ D′-Mod, we have that RD

D′ (H) is isomorphic to a direct sum of indecomposables of I′(d′). Notice that wereally need to replace D by D, first, in Proposition 2.11 and, after, in Theorem 3.4, before we can derive the precedingstatement for the tame seminested ditalgebras D′ and D.Since D′-Mod is equivalent to the product category De-Mod×Df-Mod, we can consider the subfamily I′′(d′) of I′(d′)obtained from this last one by excluding all the indecomposables from Df-Mod, as well as all the indecomposables
N ′ ∈ De-Mod such that ΞΛ0Fφ(N ′) has the form Q → 0. Then, I(d) = Cok0 Ξ′I′′(d′) is a finite family of finite-dimensionalindecomposable Λ0-modules.Take any generic Λ-module M with endolM ≤ d such that M 6∼= tensH, for any generic Λ0-module H. Let us show thatresM is isomorphic to a direct sum of Λ0-modules in I(d). Consider a minimal projective presentation Q′ → Q → M → 0
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of M. Then, there is an N ∈ D-Mod = D-Mod such that ΞΛ(N) ∼= (Q′→Q) and Cok ΞΛ(N) ∼= M. Since M isindecomposable, so is N. Then, from [3, 4.4], we obtain endolN ≤ endolM× (1+ dimk Λ) ≤ d′.Suppose that N ∼= ED
D′ (N ′), for some pregeneric N ′ ∈ D′-Mod. There is an isomorphism N ′ ∼= Fe(Ne)⊕F f (Nf )in D′-Mod, for some Ne ∈ De-Mod and Nf ∈ Df-Mod, which is preserved by the functor ED

D′ . Then, N ∼= ED
D′ (N ′) ∼=

ED
D′Fe(Ne)⊕ED

D′F f (Nf ) and, since N is indecomposable, we have that Ne = 0 or Nf = 0. If Nf 6= 0, we obtain Ne = 0and Nf is indecomposable. In order to justify this last statement, assume Nf decomposes non-trivially, it does soin Df-Mod, hence F f (Nf ) has a non-trivial decomposition in D′-Mod, which is preserved by ED
D′ , contradicting again theidecomposability of N. This argument is not superfluous, because the domain of ED

D′ is D′-Mod not D′-Mod, thus we needto show that the decomposition of F f (Nf ) occurs in fact in D′-Mod. Since D has no marked points, that is R is a productof copies of k , the Df-module Nf is one-dimensional. Thus, F f (Nf ) is a one-dimensional module, corresponding to apoint of D′, not in De. Then, its extension N ∼= ED
D′F f (Nf ) is again such a one-dimensional D-module: a contradictionbecause N is infinite-dimensional. Then, we can assume that Nf = 0 and, hence, N ∼= ED

D′Fe(Ne).As indicated in the proof of [2, 6.1], for any Ne ∈ De-Mod, we have
ΞΛED

D′Fe(Ne) ∼= Tens ΞΛ0 (Ne),
where Tens : P(Λ0)→ P(Λ) is the functor induced by tens on the categories of morphisms between projectives, see [2, 2.5].Now, we apply this claim to our previously fixedNe to obtain ΞΛ(N) ∼= ΞΛED

D′Fe(Ne) ∼= Tens ΞΛ0 (Ne). Therefore, using [2,2.5], we get
M ∼= Cok ΞΛ(N) ∼= Cok Tens ΞΛ0 (Ne) ∼= tens Cok ΞΛ0 (Ne),

which leads to a contradiction: Indeed, Ne is a pregeneric De-module because N ′ is a pregeneric D′-module; thus,Cok ΞΛ0 (Ne) is a generic Λ0-module.Then, N 6∼= ED
D′ (N ′), for any pregeneric N ′ ∈ D′-Mod, and RD

D′ (N) ∼= ⊕
iNi, for some indecomposable D′-modules

Ni ∈ I′(d′). From the commutativity up to isomorphism of the diagram given in Reminder 4.1, it follows that
resM ∼= res Cok ΞΛ(N) ∼= Cok Res ΞΛ(N) ∼= Cok Ξ′RD

D′ (N) ∼= ⊕
i

Cok Ξ′(Ni),
which is a direct sum of modules in I(d), and we are done.
We immediately obtain the following.
Corollary 4.3.
Assume that Λ is a tame finite-dimensional basic algebra over an algebraically closed field k. Suppose that Λ0 is a
convex algebra in Λ. Then, for any generic Λ-module G, either the Λ0-module resG is a generic Λ0-module or resG is
a direct sum of finite-dimensional indecomposable Λ0-modules.

Remark 4.4.Under the assumptions of the last corollary, for any Λ-module M, we have
endol resM ≤ dimk Λ0× (1+ dimk Λ)× endolM.

Indeed, assume that endolM = d is finite and keep in mind the notations of Reminder 4.1. Choose an indecomposable
N ∈ D-Mod with Cok ΞΛ(N) ∼= M. Then, by [3, 2.2 and 4.4], we have endol RD

D′ (N) ≤ endolN ≤ (1+ dimk Λ)×d. Asbefore, we have resM ∼= Cok0 Ξ′RD
D′ (N) and then, using [3, 4.4], we obtain endol resM ≤ dimk Λ0× endol RD

D′ (N).
Finally, we show an example of a wild finite-dimensional algebra Λ and a convex algebra Λ0 in Λ for which the conclusionsof Theorem 4.2 do not hold.
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Example 4.5.Consider the path k-algebra Λ of the quiver
1 α←−−−−−←−−−−−

β
2 γ−−−−−→−−−−−→

δ
3

and the convex algebra Λ0 in Λ determined by the subquiver
2 γ−−−−−→−−−−−→

δ
3.

Then, we have the generic Λ-module G corresponding to the representation
k(x) x←−−−−−←−−−−−Id k(x) x−−−−−→−−−−−→Id k(x)

with EndΛ G ∼= k(x) and endol G ≤ 3. The algebra Λ0 is in fact cofinal in Λ, as in [2, 1.1]. Then, from [2, 2.3],the restriction res = Λ0⊗Λ− : Λ-Mod → Λ0-Mod is isomorphic to the standard restriction functor, which maps each
M ∈ Λ-Mod onto (e2+e3)M. Here, e1, e2, e3 denote the canonical primitive orthogonal idempotents of Λ, correspondingto the vertices 1, 2, 3, respectively, thus e2+e3 is the unit element in Λ0. Hence, the Λ0-module G0 = resG is given bythe representation

k(x) x−−−−−→−−−−−→Id k(x)
and it is a generic Λ0-module. Since Λ0 is tame hereditary, we know that G0 is the unique generic Λ0-module, up toisomorphism, see [5, 1.5]. But G 6∼= tensG0 because they are not isomorphic as right k(x)-modules. Indeed, the elements
α⊗e2 and β⊗e2 are k(x)-linearly independent, thus dimk(x) e1 tensG0 ≥ 2 > dimk(x) e1G. All this means that item (ii)of Theorem 4.2 does not hold here.In order to see that item (i) of Theorem 4.2 fails too for Λ and Λ0, we can consider a fixed n ∈ N and the family {Mλ}λ∈kof indecomposable Λ-modules with dimk Mλ = 3n given by the representations

kn
Jn(λ)←−−−−−←−−−−−
In

kn
Jn(λ)−−−−−→−−−−−→
In

kn,

where Jn(λ) denotes the Jordan block with eigenvalue λ of size n×n. For each λ ∈ k , the restriction Nλ = resMλ isgiven by the representation
kn

Jn(λ)−−−−−→−−−−−→
In

kn.

Then, they constitute an infinite family of pairwise non-isomorphic indecomposable Λ0-modules. It is not hard to seethat Mλ 6∼= tensNµ , for all λ, µ ∈ k . Having in mind the well-known description of the indecomposable Λ0-modules, seefor instance [7, XI.4], and the fact that dimk e2Mλ = n = dimk e3Mλ, we can see that (i) of Theorem 4.2 does not hold.
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