

Central European Journal of Mathematics

On restrictions of generic modules of tame algebras

Research Article

Raymundo Bautista¹*, Efrén Pérez^{2†}, Leonardo Salmerón^{1‡}

1 Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, 58089, México

2 Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida, 97119, México

Received 9 November 2011; accepted 2 May 2012

Abstract: Given a convex algebra Λ_0 in the tame finite-dimensional basic algebra Λ , over an algebraically closed field, we describe a special type of restriction of the generic Λ -modules.

MSC: 16G60, 16G20, 16G99

Keywords: Differential tensor algebras • Ditalgebras • Reduction functors • Endolength • Generic modules • Tame algebras © Versita Sp. z o.o.

1. Introduction

In this article, we assume that the ground field k is algebraically closed. All our algebras Λ are associative k-algebras with unit element, and Λ -Mod denotes the category of (left) Λ -modules.

The following situation arises frequently in the representation theory of algebras. Let Λ be a finite-dimensional algebra and take any idempotent e_0 of Λ . If we make $\Lambda_0 = e_0 \Lambda e_0$, we have the standard restriction functor $\rho \colon \Lambda$ -Mod $\rightarrow \Lambda_0$ -Mod, where $\rho(M) = e_0 M$, for any $M \in \Lambda$ -Mod. This functor admits as a left adjoint the functor tens = $\Lambda e_0 \otimes_{\Lambda_0} - : \Lambda_0$ -Mod \rightarrow Λ -Mod, which is full and faithful, see for instance [1, § 1.6].

Let us recall some terminology from [2]. Given a finite-dimensional basic algebra Λ , over our algebraically closed field k, there is a semisimple subalgebra S of Λ such that Λ admits a decomposition $\Lambda = S \bigoplus \operatorname{rad} \Lambda$ of S-S-bimodules. Consider a decomposition $1 = \sum_{e \in E} e$ of the unit element of S as a sum of central primitive orthogonal idempotents in S, and let E_0 be a subset of E. Then, E_0 is called *convex* if and only if, whenever $e'' \Lambda e' \Lambda e \neq 0$ with $e'', e \in E_0$ and $e' \in E$, we have that $e' \in E_0$.

^{*} E-mail: raymundo@matmor.unam.mx

⁺ E-mail: jperezt@uady.mx

[‡] E-mail: salmeron@matmor.unam.mx

Given a convex subset E_0 of E, we are interested in the algebra $\Lambda_0 = e_0\Lambda e_0$, where $e_0 = \sum_{e \in E_0} e_e$, and we want to establish some relations between the categories Λ -mod and Λ_0 -mod. Notice that Λ_0 is also a basic finite-dimensional algebra which splits over its radical: $\Lambda_0 = S_0 \bigoplus \operatorname{rad} \Lambda_0$, where $S_0 = e_0 S e_0$ and $\operatorname{rad} \Lambda_0 = e_0(\operatorname{rad} \Lambda) e_0$. The algebra Λ_0 is called *convex in* Λ if E_0 is a convex subset of E. Notice that our definition of convexity differs from the one commonly used in the theory of locally bounded categories.

Given a convex algebra Λ_0 in Λ , the morphism $\psi: \Lambda \to \Lambda_0$ given by $\psi(\lambda) = e_0\lambda e_0$, $\lambda \in \Lambda$, is a morphism of algebras. Therefore, we can consider the Λ_0 - Λ -bimodule Λ_0 and a new type of natural restriction functor

res =
$$\Lambda_0 \otimes_{\Lambda} -: \Lambda$$
-Mod $\rightarrow \Lambda_0$ -Mod.

We denote by $\mathcal{P}(\Lambda)$ and $\mathcal{P}(\Lambda_0)$ the categories of morphisms between projective Λ -modules and projective Λ_0 -modules, respectively. Then, the functors tens and res induce functors Tens: $\mathcal{P}(\Lambda_0) \to \mathcal{P}(\Lambda)$ and Res: $\mathcal{P}(\Lambda) \to \mathcal{P}(\Lambda_0)$ such that res Cok \cong Cok₀ Res and Cok Tens \cong tens Cok₀, where Cok: $\mathcal{P}(\Lambda) \to \Lambda$ -Mod and Cok₀: $\mathcal{P}(\Lambda_0) \to \Lambda_0$ -Mod are the cokernel functors. Moreover,

restens
$$\cong 1_{\Lambda_0-Mod}$$

and, then, given $M \in \Lambda$ -Mod, we have that $M \cong$ tens res M if and only if $M \cong$ tens M', for some $M' \in \Lambda_0$ -Mod, see [2]. We keep the notation introduced before for the rest of this paper.

Recall also that, given a Λ -module G, by definition, the *endolength* of G is its length as a right $End_{\Lambda}(G)^{op}$ -module. The module G is called *generic* if it is indecomposable, of infinite length as a Λ -module, but with finite endolength. The algebra Λ is called *generically tame* if, for each $d \in \mathbb{N}$, there is only a finite number of isomorphism classes of generic Λ -modules of endolength d. This notion was introduced by Crawley-Boevey in [5], providing a new definition of tameness, which coincides with the usual notion of tameness for finite-dimensional algebras over algebraically closed fields, but which makes sense for arbitrary algebras.

We will show that given a convex algebra Λ_0 in the tame algebra Λ and any generic Λ -module G, the Λ_0 -module res G has finite endolength and either it is generic, or it is a direct sum of some finite-dimensional Λ_0 -modules. This is our Corollary 4.3; see also the more complete Theorem 4.2.

This theorem is proved using matrix problem methods and we resort to the ditalgebra language of [4]. It is obtained as a consequence of the discussion of parametric families of modules through realizations proposed by Crawley-Boevey in [5] and the study of extension/restriction interactions between module categories over a ditalgebra and a proper subditalgebra presented in [2].

Our Theorem 3.4 for ditalgebras has its own importance because it can be used to study relations of the generic modules with bounded endolength over a finite-dimensional algebra Λ , with the generic modules over hereditary algebras. This can be done in the same way that [2] was used in [3] to relate the corresponding finite-dimensional indecomposables with bounded dimension.

2. Families of modules

As usual, given any k-ditalgebra A, we denote by A-Mod the category of A-modules, see [4, 2.2]. Recall from [3] the following definitions.

Definition 2.1.

Let \mathcal{A} be a layered ditalgebra, with layer (R, W), see $[4, \S 4]$. Given $\mathcal{M} \in \mathcal{A}$ -Mod, denote by $E_{\mathcal{M}} = \operatorname{End}_{\mathcal{A}}(\mathcal{M})^{\operatorname{op}}$ its endomorphism algebra. Then, \mathcal{M} admits a structure of R- $E_{\mathcal{M}}$ -bimodule, where $m \cdot (f^0, f^1) = f^0(m)$, for $m \in \mathcal{M}$ and $(f^0, f^1) \in E_{\mathcal{M}}$. By definition, the *endolength* of \mathcal{M} , denoted by endol \mathcal{M} , is the length of \mathcal{M} as a right $E_{\mathcal{M}}$ -module. A module $\mathcal{M} \in \mathcal{A}$ -Mod is called *pregeneric* if \mathcal{M} is indecomposable, with finite endolength, but with infinite dimension over the ground field k. If *B* is any *k*-algebra, we have the corresponding regular ditalgebra \mathcal{B} with layer (*B*, 0). Then, the categories \mathcal{B} -Mod and *B*-Mod can be identified canonically. If the algebra *B* is finite-dimensional, the notion of pregeneric \mathcal{B} -module coincides with the notion of generic *B*-module. For infinite-dimensional algebras, this is not always the case. A recurrent argument in the reduction techniques used to study modules over finite-dimensional algebras Λ , passes from the module category of a ditalgebra \mathcal{A} , after some reduction process, to the category of projective presentations, and then to Λ -Mod. This process maps pregeneric \mathcal{A} -modules onto generic Λ -modules, see [3].

Notation 2.2.

Throughout this work, given a ditalgebra $\mathcal{A} = (T, \delta)$, we denote with a roman A the subalgebra $[T]_0$ of degree zero elements of the underlying graded algebra T of \mathcal{A} , see $[4, \S 1]$. Then, the categories A-Mod and \mathcal{A} -Mod share the same class of objects, but there are more morphisms in \mathcal{A} -Mod. There is a canonical embedding functor $L_{\mathcal{A}} : A$ -Mod $\rightarrow \mathcal{A}$ -Mod, which is the identity on objects and maps each $f^0 \in \text{Hom}_A(\mathcal{M}, \mathcal{N})$ onto $L_{\mathcal{A}}(f^0) = (f^0, 0)$.

It may be the case that for a layered ditalgebra A, an A-module M admits a non-trivial decomposition in A-Mod but is indecomposable in A-Mod. Thus, it is not always true that the functor L_A preserves indecomposability.

Reminder 2.3.

In this work, we have to deal mainly with *seminested ditalgebras* A. This means that A admits a layer (R, W) such that: R is a minimal k-algebra, the layer (R, W) is triangular, the R-R-bimodule W_1 is freely generated by a finite directed subset \mathbb{B}_1 of W_1 , and the bimodule filtration

$$W_0^0 \subseteq W_0^1 \subseteq \ldots \subseteq W_0^{\ell_0} = W_0$$

corresponding to W_0 in the triangularity conditions for the layer, see [4, 5.1], is freely generated by a set filtration

$$\mathbb{B}_0^0 \subseteq \mathbb{B}_0^1 \subseteq \ldots \subseteq \mathbb{B}_0^{\ell_0} = \mathbb{B}_0$$

of a finite directed subset \mathbb{B}_0 of W_0 . This means that each W_0^i is freely generated by \mathbb{B}_0^i , as in [4, 23.2].

Recall that a *rational algebra* Γ is, by definition, a finitely generated localization of the polynomial algebra k[x]. By definition, a minimal algebra R is a finite product of the form $k \times \cdots \times k \times \Gamma_1 \times \cdots \times \Gamma_t$, where $\Gamma_1, \ldots, \Gamma_t$ are rational algebras.

There is a bigraph \mathbb{B} attached naturally to any seminested ditalgebra \mathcal{A} , see [4, 23.9]. The *points* in \mathbb{B} are in bijective correspondence with the indecomposable factors of R, and the *marked points* are by definition those corresponding to factors which are rational algebras. The sets \mathbb{B}_0 and \mathbb{B}_1 are, respectively, the sets of *solid arrows* and *dashed arrows* of the bigraph \mathbb{B} (and of the seminested ditalgebra \mathcal{A}). The bigraph \mathbb{B} of \mathcal{A} allows us to describe the category \mathcal{A} -Mod as a category of representations of the bigraph, see [4, 23.10].

Finally, we recall that a ditalgebra \mathcal{A} over an algebraically closed field k is *tame* if, for every $d \in \mathbb{N}$, there is a finite collection $\{(\Gamma_i, Z_i)\}_{i=1}^n$, where Γ_i is a rational algebra and Z_i is an A- Γ_i -bimodule which is free of finite rank as a right Γ_i -module, such that, for every indecomposable $M \in \mathcal{A}$ -Mod with $\dim_k M = d$, there are an $i \in [1, n]$ and a simple Γ_i -module S with $Z_i \otimes_{\Gamma_i} S \cong M$ in \mathcal{A} -Mod. There are various reformulations of this definition, see [4, § 27].

In the following, we adapt to the context of tame seminested ditalgebras some definitions and results on tame finitedimensional algebras due to Crawley-Boevey, see [5, §5]. Some of these adaptations are derived directly from his results (this is the case of Proposition 2.11); some others use his arguments rephrased for ditalgebras in [4]. Given a rational algebra Γ , we denote by Irred Γ a complete set of inequivalent irreducible elements of Γ .

Definition 2.4.

Let A be a tame seminested ditalgebra over the field k, as in [4, 23.5]. If G is a pregeneric A-module, a *realization* Z for G over the rational algebra $\Gamma = k[x]_f$ is an A- Γ -bimodule Z, finitely generated as a right Γ -module, such that

 $G \cong Z \otimes_{\Gamma} k(x)$ in \mathcal{A} -Mod and $endol G = \dim_{k(x)} (Z \otimes_{\Gamma} k(x)).$

Remark 2.5.

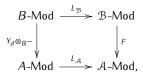
If A is a layered k-ditalgebra and $G \cong Z \otimes_{\Gamma} k(x)$ in A-Mod, for some A- Γ -bimodule Z, where Γ is a rational algebra, then we have the canonical embeddings of k-algebras

 $k(x) \subseteq \operatorname{End}_{A^{k(x)}}(Z \otimes_{\Gamma} k(x)) \subseteq \operatorname{End}_{A}(Z \otimes_{\Gamma} k(x)) \subseteq \operatorname{End}_{A}(Z \otimes_{\Gamma} k(x)),$

where $A^{k(x)}$ denotes the extended algebra $A \otimes_k k(x)$, and hence endol $G = \text{endol}(Z \otimes_{\Gamma} k(x)) \leq \dim_{k(x)}(Z \otimes_{\Gamma} k(x))$.

Theorem 2.6.

Let \mathcal{A} be a tame seminested ditalgebra and $d \in \mathbb{N}$. Then, there are a minimal ditalgebra \mathcal{B} , see [4, 23.5], and an A-B-bimodule Y_d , which is finitely generated as a right B-module, such that, for any $G \in \mathcal{A}$ -Mod with endol $G \leq d$, there are a B-E-bimodule N with finite length as a right E-module and an isomorphism $G \cong Y_d \otimes_B N$ in \mathcal{A} -Mod, where $E = \operatorname{End}_{\mathcal{A}}(G)^{\operatorname{op}}$. Moreover, there is a full and faithful functor $F : \mathcal{B}$ -Mod $\rightarrow \mathcal{A}$ -Mod such that the following diagram commutes up to isomorphism:



where L_A and L_B denote the canonical embeddings.

Proof. Apply [4, 28.22] to any given *d*, to obtain a minimal ditalgebra \mathcal{B} and a reduction functor $F : \mathcal{B}$ -Mod $\rightarrow \mathcal{A}$ -Mod such that, for any *k*-algebra *E*, the induced functor $F^E : \mathcal{B}$ -E-Mod $\rightarrow \mathcal{A}$ -E-Mod is length controlling and, for any \mathcal{A} -*E*-bimodule *G* with length $\leq d$, there is a *B*-*E*-bimodule *N* such that $G \cong F^E(N)$. By definition, a *reduction functor*, see [4, 25.10], is a composition of functors of type F^a , F^r , F^d , F^e and F^u , corresponding to ditalgebra operations of type: absorption of a loop, as in [4, 23.16], regularization, as in [4, 23.15], deletion of idempotents, as in [4, 23.14], edge reduction, as in [4, 23.18], and unravelling, as in [4, 23.23], respectively. The functors F^a , F^r and F^d are full and faithful, by [4, 8.20], [4, 8.19] and [4, 8.17], respectively. The functors F^e and F^u are full and faithful because they are of type F^X , where *X* is a complete admissible module, by [4, 17.12]. It follows that any reduction functor is full and faithful, and so is *F*. From [4, 22.7], we get that $Y_d = F(B)$ has the structure of an *A*-*B*-bimodule, finitely generated as a right *B*-module, and the above diagram commutes.

Assume that *G* is an *A*-module with endolength $\leq d$. If we make $E = \text{End}_{\mathcal{A}}(G)^{\text{op}}$, then *G* is an *A*-*E*-bimodule with length $\leq d$ as a right *E*-module, and has the form $G \cong F^{E}(N)$ for some $N \in \mathcal{B}$ -*E*-Mod with finite length. \Box

Proposition 2.7.

Let A be a tame seminested ditalgebra over the algebraically closed field k and take $d \in \mathbb{N}$. Then, if B and Y_d are the minimal k-ditalgebra and the A-B-bimodule obtained by applying Theorem 2.6, with the integer d, we have:

(i) The A-modules of the form $G = Y_d \otimes_B Q_z$, where Q_z is some principal generic B-module, see [4, 31.3(1)], are pregeneric, and satisfy

$$\operatorname{End}_{\mathcal{A}} G / \operatorname{rad} \operatorname{End}_{\mathcal{A}} G \cong k(x).$$

(ii) Any pregeneric A-module of endolength $\leq d$ arises this way.

Proof. (i) For any marked point *z* of the minimal ditalgebra \mathcal{B} , denote by Q_z the principal generic *B*-module at the point *z*. Thus, $Be_z = k[x]_{f(x)}$ and $Q_z = k(x)$ has a natural structure of a B-k(x)-bimodule. Consider the reduction functor $F : \mathcal{B}$ -Mod $\rightarrow \mathcal{A}$ -Mod of the last theorem, then $G = Y_d \otimes_B Q_z \cong F(Q_z)$ is an $\mathcal{A}^{k(x)}$ -module, finite-dimensional over k(x). Thus, from Remark 2.5, the \mathcal{A} -module *G* has finite endolength. Proceeding as in the proof of [4, 31.7], we obtain (i).

(ii) Let *G* be a pregeneric *A*-module with endol $G \le d$. By assumption, we already know that $G \cong Y_d \otimes_B N$, for some *B*-*E*-bimodule *N*, where $E = \text{End}_A(G)^{\text{op}}$. Then, *N* is a generic *B*-module and so $N \cong Q_z$, for some marked point *z* of *B*, by [4, 31.3].

Corollary 2.8.

Assume that A is a seminested ditalgebra over the algebraically closed field k. Then, A is tame if and only if it is pregenerically tame.

Proof. From Drozd's theorem, A is tame if and only if A is not wild, see [6] and [4, 27.10]. Then, [3, 2.9] gives that A is tame whenever it is pregenerically tame. Finally, by Proposition 2.7, the tameness of A implies its pregeneric tameness.

Remark 2.9.

Let \mathcal{A} be a tame seminested k-ditalgebra and $G \cong Z \otimes_{\Gamma} k(x)$ in \mathcal{A} -Mod, as in Remark 2.5. Then, from Proposition 2.7, it follows that

endol
$$G = \dim_{k(x)}(Z \otimes_{\Gamma} k(x)).$$

In particular, the last equality in the definition of realization can be eliminated.

Theorem 2.10.

Let A be a tame seminested ditalgebra. Then:

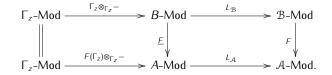
(i) For any pregeneric A-module G, there is a realization Z of G, over some rational algebra Γ , which is free as a right Γ -module and such that the composition

$$\Gamma\operatorname{-Mod} \xrightarrow{\mathbb{Z} \otimes \Gamma^{-}} A\operatorname{-Mod} \xrightarrow{\mathbb{L}_{\mathcal{A}}} \mathcal{A}\operatorname{-Mod}$$

preserves indecomposables and isomorphism classes.

(ii) For each $d \in \mathbb{N}$, there are pregeneric A-modules G_1, \ldots, G_m and, for each $i \in [1, m]$, a realization Z_i of G_i over a rational algebra Γ_i , such that, for almost all indecomposable A-modules M with $\dim_k M \leq d$, we have an isomorphism $M \cong Z_i \otimes_{\Gamma_i} \Gamma_i / (p^n)$ in A-Mod for some $i \in [1, m]$, $p \in \operatorname{Irred} \Gamma_i$, and $n \in \mathbb{N}$.

Proof. (i) If *G* is a pregeneric *A*-module with endolength *d*, then applying Theorem 2.6, we obtain a minimal ditalgebra \mathcal{B} , a reduction functor $F : \mathcal{B}$ -Mod $\rightarrow \mathcal{A}$ -Mod, and an *A*-*B*-bimodule *Z* such that $L_{\mathcal{A}}(Z \otimes_B -) \cong FL_{\mathcal{B}}$. From the last proposition, we know that $G \cong F(Q_z)$, for some principal generic *B*-module Q_z . Consider the rational algebra $\Gamma_z = Be_z = k[x]_f$. Then, from [4, 22.7], we have the following diagram, which commutes up to isomorphism:



From [4, 31.6], $L_{\mathcal{B}}$ preserves indecomposables and isomorphism classes. Hence, the composition $FL_{\mathcal{B}}(\Gamma_z \otimes_{\Gamma_z} -)$ preserves indecomposability and isomorphism classes and, therefore, so does the lower row of the diagram $L_{\mathcal{A}}(F(\Gamma_z) \otimes_{\Gamma_z} -)$.

Moreover, since F is a reduction functor, $F(\Gamma_z)$ is an A- Γ_z -bimodule which is projective and finitely generated by the right. Hence, since Γ_z is a principal ideal domain, $F(\Gamma_z) \cong Z \otimes_B \Gamma_z \cong Z e_z$ is in fact a free right Γ_z -module of finite rank. We have in A-Mod the isomorphisms

$$F(\Gamma_z) \otimes_{\Gamma_z} k(x) = L_{\mathcal{A}} \left(F(\Gamma_z) \otimes_{\Gamma_z} Q_z \right) \cong F \left(L_{\mathcal{B}} \left(\Gamma_z \otimes_{\Gamma_z} Q_z \right) \right) \cong F(Q_z) \cong G$$

and $\dim_{k(x)}(F(\Gamma_z) \otimes_{\Gamma_z} k(x)) = \operatorname{rk} F(\Gamma_z) = \operatorname{endol} G$, see the proof of [4, 31.8]. Thus, the bimodule $F(\Gamma_z)$ is the wanted realization for G over Γ_z .

(ii) From [4, 29.6], the reduction functor which appeared in Theorem 2.6 also satisfies that, for any indecomposable A-module M with dim_k $M \le d$, there is a \mathcal{B} -module N with $F(N) \cong M$. Moreover, almost any such finite-dimensional

indecomposable \mathcal{B} -module N is of the form $N \cong \Gamma_z/(p^i)$, for some marked point z of \mathcal{B} , some $p \in \operatorname{Irred} \Gamma_z$, and $i \in \mathbb{N}$. Thus, with the notation of the last argument, for almost any indecomposable \mathcal{A} -module M with $\dim_k M \leq d$, there is such an $N \cong \Gamma_z/(p^i)$, and $M \cong Ze_z \otimes N \cong Ze_z \otimes \Gamma_z/(p^i)$, where Ze_z is a realization over the rational algebra Γ_z of the pregeneric \mathcal{A} -module $G_z = Z \otimes_B Q_z$.

Proposition 2.11.

Let Λ be a tame finite-dimensional basic algebra over the algebraically closed field k and consider its Drozd's ditalgebra \mathcal{D} , as in [4, 19.1]. Let Z_1 and Z_2 be realizations of the pregeneric \mathcal{D} -modules G_1 and G_2 , over the rational algebras Γ_1 and Γ_2 , respectively. If there is an infinite subset P of Irred Γ_2 such that, for all $p \in P$, we have

$$Z_2 \otimes_{\Gamma_2} \Gamma_2 / (p^{i_p}) \cong Z_1 \otimes_{\Gamma_1} \Gamma_1 / (q_p)$$
 in \mathcal{D} -Mod

for some $q_p \in \Gamma_1$ and $i_p \in \mathbb{N}$, then $G_2 \cong G_1$.

Proof. Consider the composable functors \mathcal{D} -Mod $\xrightarrow{\Xi_{\Lambda}} \mathcal{P}^{1}(\Lambda) \xrightarrow{\text{Cok}} \Lambda$ -Mod, where Ξ_{Λ} is the usual equivalence functor of [4, 19.8] and Cok is the cokernel functor, see [4, 18.10]. From [4, 22.18 (2)], if Z is the transition bimodule, we have

$$Z \otimes_D Z_2 \otimes_{\Gamma_2} \Gamma_2 / (p^{i_p}) \cong \operatorname{Cok} \Xi_{\Lambda} [Z_2 \otimes_{\Gamma_2} \Gamma_2 / (p^{i_p})] \cong \operatorname{Cok} \Xi_{\Lambda} [Z_1 \otimes_{\Gamma_1} \Gamma_1 / (q_p)] \cong Z \otimes_D Z_1 \otimes_{\Gamma_1} \Gamma_1 / (q_p).$$

Moreover, for $i \in [1, 2]$, the relation $G_i \cong Z_i \otimes_{\Gamma_i} k(x)$ implies that

$$\operatorname{Cok} \Xi_{\Lambda}(G_i) \cong \operatorname{Cok} \Xi_{\Lambda}[Z_i \otimes_{\Gamma_i} k(x)] \cong Z \otimes_D Z_i \otimes_{\Gamma_i} k(x)$$

where the last term is finite-dimensional over k(x). Thus, $\operatorname{Cok} \Xi_{\Lambda}(G_i)$ is a generic Λ -module with realization $Z \otimes_D Z_i$ over the rational algebra Γ_i . From [5, 5.2 (4)], we obtain that $\operatorname{Cok} \Xi_{\Lambda}(G_1) \cong \operatorname{Cok} \Xi_{\Lambda}(G_2)$. Hence, $G_1 \cong G_2$.

3. Pregeneric modules for Drozd's ditalgebras

The proof of our main result relies on the following theorem, proved in [2]. It applies to tame seminested ditalgebras with a proper subditalgebra. Let us recall some terminology from [4].

Definition 3.1.

Let $\mathcal{A} = (T, \delta)$ be any ditalgebra with layer (R, W). Assume we have R-R-bimodule decompositions $W_0 = W'_0 \oplus W''_0$ and $W_1 = W'_1 \oplus W''_1$. Consider the subalgebra T' of T generated by R and $W' = W'_0 \oplus W'_1$. Then, $A' = [T']_0$ is freely generated by the pair (R, W'_0) . Let us also assume that $\delta(W'_0) \subseteq A'W'_1A'$ and $\delta(W'_1) \subseteq A'W'_1A'W'_1A'$. Then, the differential δ on T restricts to a differential δ' on the algebra T', and we obtain a new ditalgebra $\mathcal{A}' = (T', \delta')$ with layer (R, W'). A layered ditalgebra \mathcal{A}' is called a *proper subditalgebra of* \mathcal{A} if it is obtained from an R-R-bimodule decomposition of W, as we have just described.

A proper subditalgebra \mathcal{A}' of a triangular ditalgebra \mathcal{A} is called *initial* when its triangular filtrations coincide with the first terms of the triangular filtrations of \mathcal{A} , see [4, 14.8]. The inclusion $r: T' \to T$ yields a morphism of ditalgebras $r: \mathcal{A}' \to \mathcal{A}$ and, hence, a *restriction functor*

$$R_{\mathcal{A}'}^{\mathcal{A}} = F_r : \mathcal{A}\text{-}\mathsf{Mod} \to \mathcal{A}'\text{-}\mathsf{Mod}.$$

The projection $\pi: A = [T]_0 \rightarrow [T']_0 = A'$ yields an *extension functor*

$$E_{A'}^A = F_{\pi}$$
: A'-Mod \rightarrow A-Mod.

Theorem 3.2.

Assume that \mathcal{A}' is an initial subditalgebra of the tame seminested ditalgebra \mathcal{A} , over the algebraically closed field k. Then, for any $d \in \mathbb{N}$, there is a finite family $\mathfrak{I}(d)$ of indecomposable \mathcal{A}' -modules such that, for any indecomposable \mathcal{A} -module M with $\dim_k M \leq d$ and $M \ncong E^{\mathcal{A}}_{\mathcal{A}'}(N)$ in \mathcal{A} -Mod, for any $N \in \mathcal{A}'$ -Mod, the module $R^{\mathcal{A}}_{\mathcal{A}'}(M)$ is isomorphic in \mathcal{A}' -Mod to a direct sum of modules in $\mathfrak{I}(d)$.

The following lemma is another important ingredient of the proof of our main result.

Lemma 3.3.

Let A be a Roiter ditalgebra with layer (R, W), where W_1 is a finitely generated R-R-bimodule, over an algebraically closed field, see [4, 5.5]. Assume that A^X is obtained from A by reduction, using the A'-module X, where A' is an initial subditalgebra of A and X is a finite direct sum of pairwise non-isomorphic finite-dimensional indecomposable A'-modules, see [4, 12.7–12.9]. Then:

- (i) The algebra $\Gamma = \text{End}_{\mathcal{A}'}(X)^{\text{op}}$ admits the splitting $\Gamma = S \oplus P$, where P is the radical of Γ , and \mathcal{A}^X is a ditalgebra with triangular layer (S, W^X) .
- (ii) Let $F^X: \mathcal{A}^X$ -Mod $\to \mathcal{A}$ -Mod be the associated functor, as in [4, 12.10]. Then, the \mathcal{A} -modules M of the form $M \cong F^X(N)$, for some (resp. finite-dimensional) $N \in \mathcal{A}^X$ -Mod, are precisely the \mathcal{A} -modules such that its restriction $R^{\mathcal{A}}_{\mathcal{A}'}(M)$ is isomorphic in \mathcal{A}' -Mod to a (resp. finite) direct sum of direct summands of X.

Proof. (i) We know that A is a Roiter ditalgebra and, by [4, 12.3], so is A'. Therefore, since k is algebraically closed, from [4, 17.3], the A'-module X is indeed admissible. Thus, A^X and F^X are defined. The module X is triangular, as in [4, 14.6], because S is semisimple. Hence, from [4, 14.10], the ditalgebra A^X has triangular layer (S, W^X).

(ii) This follows from [4, 25.5]. See the argument in the proof of [3, 7.3 (2)].

Theorem 3.4.

Let Λ be a tame finite-dimensional basic algebra over the algebraically closed field k and consider its Drozd's ditalgebra \mathcal{D} . Assume that \mathcal{D}' is an initial subditalgebra of the tame seminested ditalgebra \mathcal{D} and that $E_{D'}^{\mathcal{D}}(\mathcal{M}) \cong E_{D'}^{\mathcal{D}}(\mathcal{N})$ in \mathcal{D} -Mod whenever $\mathcal{M} \cong \mathcal{N}$ in \mathcal{D}' -Mod. Then, for any $d \in \mathbb{N}$, there is a finite family $\mathfrak{I}(d)$ of finite-dimensional indecomposable \mathcal{D}' -modules such that

- (i) for any indecomposable \mathcal{D} -module M with $\dim_k M \leq d$ and $M \ncong E^{\mathcal{D}}_{D'}(N)$ in \mathcal{D} -Mod, for any \mathcal{D}' -module N, the module $R^{\mathcal{D}}_{\mathcal{D}'}(M)$ is isomorphic in \mathcal{D}' -Mod to a direct sum of modules of $\mathfrak{I}(d)$;
- (ii) for any pregeneric \mathcal{D} -module G with endol $G \leq d$ and $G \ncong E_D^{\mathcal{D}}(H)$ in \mathcal{D} -Mod, for any pregeneric \mathcal{D}' -module H, the module $R_{\mathcal{D}'}^{\mathcal{D}}(G)$ is isomorphic in \mathcal{D}' -Mod to a direct sum of modules of $\mathfrak{I}(d)$.

Proof. From [4, 22.13], we know that \mathcal{D}' is also tame. Fix $d \in \mathbb{N}$ and apply Theorem 3.2 to \mathcal{D} and \mathcal{D}' , to obtain a finite set $\mathfrak{I}(d) = \{X_1, \ldots, X_t\}$ of pairwise non-isomorphic finite-dimensional indecomposable \mathcal{D}' -modules satisfying (i). Let G be a pregeneric \mathcal{D} -module such that endol G < d and $G \ncong E(H)$, for any pregeneric \mathcal{D}' -module H.

From (i) of Theorem 2.10 there is a realization Z of G over a rational algebra Γ , which is free finitely generated as a right Γ -module. It defines the infinite family of pairwise non-isomorphic indecomposable D-modules

$$\{Z \otimes_{\Gamma} \Gamma/(p) : p \in \text{Irred } \Gamma\}.$$

If rk Z denotes the rank of Z as a free right Γ -module, then $rk Z = \dim_{k(x)}(Z \otimes_{\Gamma} k(x)) =$ endol $G \leq d$ and, for each $p \in Irred \Gamma$, we have that

$$\dim_k(Z\otimes_{\Gamma}\Gamma/(p))\leq d.$$

Then, for any $p \in \operatorname{Irred} \Gamma$ with $Z \otimes_{\Gamma} \Gamma/(p) \ncong E_{\mathcal{D}'}^{\mathcal{D}}(N)$ in \mathcal{D} -Mod, for any $N \in \mathcal{D}'$ -Mod, the module $R_{\mathcal{D}'}^{\mathcal{D}}(Z \otimes_{\Gamma} \Gamma/(p))$ is isomorphic in \mathcal{D}' -Mod to a direct sum of modules in $\mathcal{I}(d)$. Consider the admissible \mathcal{D}' -module $X = \bigoplus_{i=1}^{t} X_i$, the seminested ditalgebra \mathcal{D}^X , see [3, 3.4], and the associated full and faithful reduction functor $F^X \colon \mathcal{D}^X$ -Mod $\to \mathcal{D}$ -Mod. Let us first show the following.

Claim. There is no infinite subset P of Irred Γ such that, for all $p \in P$, there is $N_p \in \mathcal{D}'$ -Mod with $Z \otimes_{\Gamma} \Gamma/(p) \cong E(N_p)$.

Proof of the claim. Assume that there is such a set P. Then, the tame seminested ditalgebra \mathcal{D}' admits an infinite family $\{N_p\}_{p\in P}$ of pairwise non-isomorphic indecomposable \mathcal{D}' -modules with $\dim_k N_p \leq d$. Then, from (ii) of Theorem 2.10 there are a pregeneric \mathcal{D}' -module G', a realization Z' of G', over some rational algebra Γ' , and an infinite subset Q of Irred Γ' such that, for any $q \in Q$, there are $p_q \in P$ and $i_q \in \mathbb{N}$ with $Z' \otimes_{\Gamma'} \Gamma'/(q^{i_q}) \cong N_{p_q}$. Then, for all $q \in Q$, we have

$$Z \otimes_{\Gamma} \Gamma/(p_q) \cong E(N_{p_q}) \cong E(Z' \otimes_{\Gamma'} \Gamma'/(q^{i_q})) \cong E(Z') \otimes_{\Gamma'} \Gamma'/(q^{i_q})$$

Moreover, $E(G') \cong E(Z' \otimes_{\Gamma'} k(x)) \cong E(Z') \otimes_{\Gamma'} k(x)$. From Remark 2.9, we have that E(G') is a pregeneric \mathcal{D} -module with realization E(Z') over Γ' . Then, from Proposition 2.11, we obtain that $E(G') \cong G$, contradicting our initial assumption. This ends the proof of our claim.

Then, there are infinitely many elements $p \in \operatorname{Irred} \Gamma$ such that

$$Z \otimes_{\Gamma} \Gamma/(p) \ncong E(N)$$
 for any $N \in \mathcal{D}'$ -Mod.

Hence, there is an infinite subset $P \subseteq$ Irred Γ such that, for any $p \in P$, the module $R_{\mathcal{D}'}^{\mathcal{D}}(Z \otimes_{\Gamma} \Gamma/(p))$ is isomorphic in \mathcal{D}' -Mod to a direct sum of direct summands of X. From Lemma 3.3, we know that, for each $p \in P$, there is a \mathcal{D}^X -module L_p with $Z \otimes_{\Gamma} \Gamma/(p) \cong F^X(L_p)$.

The tame seminested ditalgebra \mathcal{D}^X admits the infinite family $\{L_p\}_{p \in P}$ of pairwise non-isomorphic indecomposable \mathcal{D}^X -modules with bounded dimension. From (ii) of Theorem 2.10, there are a pregeneric \mathcal{D}^X -module G', a realization Z' of G', over some rational algebra Γ' , and an infinite subset Q of Irred Γ' such that, for any $q \in Q$, there are $p_q \in P$ and $i_q \in \mathbb{N}$ with

$$Z' \otimes_{\Gamma'} \Gamma'/(q^{i_q}) \cong L_{p_q}.$$

Thus, for $q \in Q$, we have

$$Z \otimes_{\Gamma} \Gamma/(p_q) \cong F^{\chi}(L_{p_q}) \cong F^{\chi}(Z' \otimes_{\Gamma'} \Gamma'/(q^{i_q})) \cong F^{\chi}(Z') \otimes_{\Gamma'} \Gamma'/(q^{i_q}).$$

Moreover, $F^{\chi}(G') \cong F^{\chi}(Z' \otimes_{\Gamma'} k(x)) \cong F^{\chi}(Z') \otimes_{\Gamma'} k(x)$. From Remark 2.9, we obtain that $F^{\chi}(G')$ is a pregeneric \mathcal{D} -module and $F^{\chi}(Z')$ is a realization of $F^{\chi}(G')$ over Γ' . Then, from Proposition 2.11, we obtain that $F^{\chi}(G') \cong G$. Hence, from Lemma 3.3, the module $R_{\mathcal{D}'}^{\mathcal{D}}(G)$ is a direct sum of direct summands of χ in \mathcal{D}' -Mod.

4. Main result for algebras

The first statement of the following theorem was proved in [2]. The proof of the fact that the same set $\mathcal{I}_0(d)$ works for the second statement is somehow parallel to the proof given in [2, 4.1]. For the benefit of the reader, we provide a complete proof, after recalling some constructions from [2].

Reminder 4.1.

Let $\mathcal{D} = (T, \delta)$ be a seminested ditalgebra with layer (R, W) and set of points \mathcal{P} . Assume that $\mathcal{D}' = (T', \delta')$ is a proper subditalgebra of \mathcal{D} associated to the *R*-*R*-bimodule decompositions $W_0 = W'_0 \oplus W''_0$ and $W_1 = W'_1 \oplus W''_1$. Then, the subditalgebra \mathcal{D}' is called *convex* if there is a subset \mathcal{P}_0 of \mathcal{P} such that $eW'_0e = W'_0$ and $eW'_1e = W'_1$, where *e* is the central idempotent $e = \sum_{x \in \mathcal{P}_0} e_x$ of *R*. It follows that \mathcal{D}' is seminested.

If \mathcal{D}' is a convex subditalgebra of the seminested ditalgebra \mathcal{D} , the morphism of algebras $\eta: T \to T'$ determined by the projection of R-R-bimodules $W \to W'$ is a morphism of ditalgebras $\eta: \mathcal{D} \to \mathcal{D}'$, which induces a restriction functor $F_{\eta}: \mathcal{D}'$ -Mod $\to \mathcal{D}$ -Mod with $F_{\eta}(M) = E_{\mathcal{D}'}^{\mathcal{D}}(M)$, for $M \in \mathcal{D}'$ -Mod. Thus, $E_{\mathcal{D}'}^{\mathcal{D}}(M) \cong E_{\mathcal{D}'}^{\mathcal{D}}(N)$ in \mathcal{D} -Mod whenever $M \cong N$ in \mathcal{D}' -Mod.

Moreover, if we write f = 1 - e, we get $R = Re \times Rf$ and an isomorphism of ditalgebras $\mathcal{D}' \cong \mathcal{D}^e \times \mathcal{D}^f$, where \mathcal{D}^e and \mathcal{D}^f are ditalgebras with layers (Re, W') and (Rf, 0), see [2, 5.2]. In particular, the category \mathcal{D}^f -Mod can be identified with Rf-Mod.

Since $\mathcal{D}' \cong \mathcal{D}^e \times \mathcal{D}^f$, we can consider the projection morphisms $\pi^e \colon \mathcal{D}' \to \mathcal{D}^e$ and $\pi^f \colon \mathcal{D}' \to \mathcal{D}^f$. The induced functors $F^e \colon \mathcal{D}^e$ -Mod $\to \mathcal{D}'$ -Mod $\to \mathcal{D}'$ -Mod determine an equivalence of categories

$$\mathcal{D}^{e}$$
-Mod $\times \mathcal{D}^{f}$ -Mod $\xrightarrow{F^{e} \oplus F^{t}} \mathcal{D}^{\prime}$ -Mod

described in [4, 10.3].

Now, assume that Λ is a basic finite-dimensional algebra over the algebraically closed field k and Λ_0 is a convex algebra in Λ . Then, there are a convex subditalgebra \mathcal{D}' of the Drozd ditalgebra \mathcal{D} of Λ and a functor $\Xi' : \mathcal{D}'$ -Mod $\rightarrow \mathcal{P}^1(\Lambda_0)$ such that the following diagram commutes up to isomorphism:

$$\begin{array}{c|c} \mathcal{D}\text{-}\mathsf{Mod} & \xrightarrow{\Xi_{\Lambda}} & \mathcal{P}^{1}(\Lambda) & \xrightarrow{\mathsf{Cok}} & \Lambda\text{-}\mathsf{Mod} \\ R_{\mathcal{D}'}^{\mathcal{D}} & & & & \downarrow \\ & & & & \downarrow \\ \mathcal{D}'\text{-}\mathsf{Mod} & \xrightarrow{\Xi'} & \mathcal{P}^{1}(\Lambda_{0}) & \xrightarrow{\mathsf{Cok}_{0}} & \Lambda_{0}\text{-}\mathsf{Mod}, \end{array}$$

where \equiv_{Λ} is the usual equivalence, see [4, 19.8], and Res is the restricted lifting of res, see [2, 2.1 and 5.3]. The functor \equiv' is constructed as the composition

$$\mathcal{D}'-\mathsf{Mod} \xrightarrow{H} \mathcal{D}^e-\mathsf{Mod} \xrightarrow{F_{\varphi}} \mathcal{D}^{\Lambda_0}-\mathsf{Mod} \xrightarrow{=_{\Lambda_0}} \mathcal{P}^1(\Lambda_0),$$

where H is the projection, F_{φ} is the functor induced by an isomorphism of seminested ditalgebras $\varphi \colon \mathcal{D}^{\Lambda_0} \to \mathcal{D}^e$, and Ξ_{Λ_0} is the usual equivalence.

Let us also recall that, given the convex subditalgebra \mathcal{D}' , we can modify the triangular filtrations of \mathcal{D} , obtaining a different seminested ditalgebra $\overline{\mathcal{D}}$ with the same underlying ditalgebra \mathcal{D} , such that \mathcal{D}' is an initial convex subditalgebra of $\overline{\mathcal{D}}$. Thus, \mathcal{D} and $\overline{\mathcal{D}}$ coincide as ditalgebras and share the same layer (but with different triangular filtrations). In particular, we have that $\overline{\mathcal{D}}$ -Mod = \mathcal{D} -Mod and $R_{\mathcal{D}'}^{\mathcal{D}} = R_{\mathcal{D}'}^{\overline{\mathcal{D}}}$. See [2, 5.4].

Theorem 4.2.

Assume that Λ is a tame finite-dimensional basic algebra over an algebraically closed field k. Suppose that Λ_0 is a convex algebra in Λ . Then, for any $d \in \mathbb{N}$, there is a finite family $\mathfrak{I}_0(d)$ of finite-dimensional indecomposable Λ_0 -modules such that

- (i) for any indecomposable Λ -module M with $\dim_k M \le d$ and $M \not\cong \text{tens } N$, for any Λ_0 -module N, the module res M is isomorphic to a direct sum of modules in $\mathfrak{I}_0(d)$;
- (ii) for any generic Λ -module G with endol $G \leq d$ and $G \ncong$ tens H, for any generic Λ_0 -module H, the module res G is isomorphic to a direct sum of modules in $\mathcal{I}_0(d)$.

Proof. We adopt the notations introduced in Reminder 4.1. Thus, \mathcal{D} is the Drozd ditalgebra associated to the algebra Λ . Since Λ is tame, from [4, 27.14], so are \mathcal{D} and $\overline{\mathcal{D}}$ (recall that \mathcal{D} -Mod = $\overline{\mathcal{D}}$ -Mod).

Fix $d \in \mathbb{N}$. Then, we apply Theorem 3.4 to $d' = (1 + \dim_k \Lambda) \times d$, to obtain a finite family $\mathcal{I}'(d')$ of finite-dimensional indecomposable \mathcal{D}' -modules such that, for any pregeneric $\overline{\mathcal{D}}$ -module H with endol $H \leq d'$ and $H \ncong E_{\mathcal{D}'}^{\overline{\mathcal{D}}}(H')$, for any pregeneric $H' \in \mathcal{D}'$ -Mod, we have that $R_{\mathcal{D}'}^{\overline{\mathcal{D}}}(H)$ is isomorphic to a direct sum of indecomposables of $\mathcal{I}'(d')$. Notice that we really need to replace \mathcal{D} by $\overline{\mathcal{D}}$, first, in Proposition 2.11 and, after, in Theorem 3.4, before we can derive the preceding statement for the tame seminested ditalgebras \mathcal{D}' and $\overline{\mathcal{D}}$.

Since \mathcal{D}' -Mod is equivalent to the product category \mathcal{D}^e -Mod $\times \mathcal{D}^f$ -Mod, we can consider the subfamily $\mathcal{I}'(d')$ of $\mathcal{I}'(d')$ obtained from this last one by excluding all the indecomposables from \mathcal{D}^f -Mod, as well as all the indecomposables $N' \in \mathcal{D}^e$ -Mod such that $\Xi_{\Lambda_0} F_{\varphi}(N')$ has the form $Q \to 0$. Then, $\mathcal{I}(d) = \operatorname{Cok}_0 \Xi' \mathcal{I}''(d')$ is a finite family of finite-dimensional indecomposable Λ_0 -modules.

Take any generic Λ -module M with endol $M \leq d$ such that $M \ncong$ tens H, for any generic Λ_0 -module H. Let us show that res M is isomorphic to a direct sum of Λ_0 -modules in $\mathfrak{I}(d)$. Consider a minimal projective presentation $Q' \to Q \to M \to 0$

of *M*. Then, there is an $N \in \mathcal{D}$ -Mod = $\overline{\mathcal{D}}$ -Mod such that $\Xi_{\Lambda}(N) \cong (Q' \to Q)$ and $\operatorname{Cok} \Xi_{\Lambda}(N) \cong M$. Since *M* is indecomposable, so is *N*. Then, from [3, 4.4], we obtain endol $N \leq \operatorname{endol} M \times (1 + \dim_k \Lambda) \leq d'$.

Suppose that $N \cong E_{D'}^{\overline{D}}(N')$, for some pregeneric $N' \in \mathcal{D}'$ -Mod. There is an isomorphism $N' \cong F^e(N^e) \oplus F^f(N^f)$ in D'-Mod, for some $N^e \in \mathcal{D}^e$ -Mod and $N^f \in \mathcal{D}^f$ -Mod, which is preserved by the functor $E_{D'}^{\overline{D}}$. Then, $N \cong E_{D'}^{\overline{D}}(N') \cong E_{D'}^{\overline{D}}F^e(N^e) \oplus E_{D'}^{\overline{D}}F^f(N^f)$ and, since N is indecomposable, we have that $N^e = 0$ or $N^f = 0$. If $N^f \neq 0$, we obtain $N^e = 0$ and N^f is indecomposable. In order to justify this last statement, assume N^f decomposes non-trivially, it does so in D^f -Mod, hence $F^f(N^f)$ has a non-trivial decomposition in D'-Mod, which is preserved by $E_{D'}^{\overline{D}}$, contradicting again the idecomposability of N. This argument is not superfluous, because the domain of $E_{D'}^{\overline{D}}$ is D'-Mod not \mathcal{D}' -Mod, thus we need to show that the decomposition of $F^f(N^f)$ occurs in fact in D'-Mod. Since \mathcal{D} has no marked points, that is R is a product of copies of k, the \mathcal{D}^f -module N^f is one-dimensional. Thus, $F^f(N^f)$ is a one-dimensional module, corresponding to a point of \mathcal{D}' , not in \mathcal{D}^e . Then, its extension $N \cong E_{D'}^{\overline{D}}F^f(N^f)$ is again such a one-dimensional \mathcal{D} -module: a contradiction because N is infinite-dimensional. Then, we can assume that $N^f = 0$ and, hence, $N \cong E_{D'}^{\overline{D}}F^e(N^e)$.

As indicated in the proof of [2, 6.1], for any $N^e \in \mathcal{D}^e$ -Mod, we have

$$\equiv_{\Lambda} E_{D'}^{\overline{D}} F^e(N^e) \cong \text{Tens} \equiv_{\Lambda_0}(N^e),$$

where Tens: $\mathcal{P}(\Lambda_0) \to \mathcal{P}(\Lambda)$ is the functor induced by tens on the categories of morphisms between projectives, see [2, 2.5]. Now, we apply this claim to our previously fixed N^e to obtain $\Xi_{\Lambda}(N) \cong \Xi_{\Lambda} E_{D'}^{\overline{D}} F^e(N^e) \cong$ Tens $\Xi_{\Lambda_0}(N^e)$. Therefore, using [2, 2.5], we get

$$M \cong \operatorname{Cok} \Xi_{\Lambda}(N) \cong \operatorname{Cok} \operatorname{Tens} \Xi_{\Lambda_0}(N^e) \cong \operatorname{tens} \operatorname{Cok} \Xi_{\Lambda_0}(N^e)$$

which leads to a contradiction: Indeed, N^e is a pregeneric \mathcal{D}^e -module because N' is a pregeneric \mathcal{D}' -module; thus, Cok $\equiv_{\Lambda_0}(N^e)$ is a generic Λ_0 -module.

Then, $N \ncong E_{D'}^{\overline{D}}(N')$, for any pregeneric $N' \in \mathcal{D}'$ -Mod, and $R_{\mathcal{D}'}^{\overline{D}}(N) \cong \bigoplus_i N_i$, for some indecomposable \mathcal{D}' -modules $N_i \in \mathcal{I}'(d')$. From the commutativity up to isomorphism of the diagram given in Reminder 4.1, it follows that

$$\operatorname{res} M \cong \operatorname{res} \operatorname{Cok} \Xi_{\Lambda}(N) \cong \operatorname{Cok} \operatorname{Res} \Xi_{\Lambda}(N) \cong \operatorname{Cok} \Xi' R_{\mathcal{D}'}^{\overline{\mathcal{D}}}(N) \cong \bigoplus \operatorname{Cok} \Xi'(N_i),$$

which is a direct sum of modules in $\mathcal{I}(d)$, and we are done.

We immediately obtain the following.

Corollary 4.3.

Assume that Λ is a tame finite-dimensional basic algebra over an algebraically closed field k. Suppose that Λ_0 is a convex algebra in Λ . Then, for any generic Λ -module G, either the Λ_0 -module res G is a generic Λ_0 -module or res G is a direct sum of finite-dimensional indecomposable Λ_0 -modules.

Remark 4.4.

Under the assumptions of the last corollary, for any Λ -module M, we have

endol res
$$M \leq \dim_k \Lambda_0 \times (1 + \dim_k \Lambda) \times \text{endol } M$$
.

Indeed, assume that endol M = d is finite and keep in mind the notations of Reminder 4.1. Choose an indecomposable $N \in \overline{\mathcal{D}}$ -Mod with Cok $\Xi_{\Lambda}(N) \cong M$. Then, by [3, 2.2 and 4.4], we have endol $R_{\mathcal{D}'}^{\overline{\mathcal{D}}}(N) \leq \text{endol } N \leq (1 + \dim_k \Lambda) \times d$. As before, we have res $M \cong \text{Cok}_0 \Xi' R_{\mathcal{D}'}^{\overline{\mathcal{D}}}(N)$ and then, using [3, 4.4], we obtain endol res $M \leq \dim_k \Lambda_0 \times \text{endol } R_{\mathcal{D}'}^{\overline{\mathcal{D}}}(N)$.

Finally, we show an example of a wild finite-dimensional algebra Λ and a convex algebra Λ_0 in Λ for which the conclusions of Theorem 4.2 do not hold.

Example 4.5.

Consider the path k-algebra Λ of the quiver

$$1 \xleftarrow[\beta]{\alpha} 2 \xrightarrow[\delta]{\gamma} 3$$

and the convex algebra Λ_0 in Λ determined by the subquiver

$$2 \xrightarrow[\delta]{\gamma} 3.$$

Then, we have the generic Λ -module *G* corresponding to the representation

$$k(x) \xleftarrow[ld]{x} k(x) \xrightarrow[ld]{x} k(x)$$

with $\operatorname{End}_{\Lambda} G \cong k(x)$ and endol $G \leq 3$. The algebra Λ_0 is in fact cofinal in Λ , as in [2, 1.1]. Then, from [2, 2.3], the restriction res = $\Lambda_0 \otimes_{\Lambda} -: \Lambda$ -Mod $\to \Lambda_0$ -Mod is isomorphic to the standard restriction functor, which maps each $M \in \Lambda$ -Mod onto $(e_2 + e_3)M$. Here, e_1, e_2, e_3 denote the canonical primitive orthogonal idempotents of Λ , corresponding to the vertices 1, 2, 3, respectively, thus $e_2 + e_3$ is the unit element in Λ_0 . Hence, the Λ_0 -module $G_0 = \operatorname{res} G$ is given by the representation

$$k(x) \xrightarrow[d]{x} k(x)$$

and it is a generic Λ_0 -module. Since Λ_0 is tame hereditary, we know that G_0 is the unique generic Λ_0 -module, up to isomorphism, see [5, 1.5]. But $G \not\cong$ tens G_0 because they are not isomorphic as right k(x)-modules. Indeed, the elements $\alpha \otimes e_2$ and $\beta \otimes e_2$ are k(x)-linearly independent, thus $\dim_{k(x)} e_1$ tens $G_0 \ge 2 > \dim_{k(x)} e_1 G$. All this means that item (ii) of Theorem 4.2 does not hold here.

In order to see that item (i) of Theorem 4.2 fails too for Λ and Λ_0 , we can consider a fixed $n \in \mathbb{N}$ and the family $\{M_\lambda\}_{\lambda \in k}$ of indecomposable Λ -modules with dim_k $M_{\lambda} = 3n$ given by the representations

$$k^n \xleftarrow{J_n(\lambda)}{I_n} k^n \xrightarrow{J_n(\lambda)}{I_n} k^n$$
,

where $J_n(\lambda)$ denotes the Jordan block with eigenvalue λ of size $n \times n$. For each $\lambda \in k$, the restriction $N_{\lambda} = \operatorname{res} M_{\lambda}$ is given by the representation

$$k^n \xrightarrow{J_n(\lambda)} k^n.$$

Then, they constitute an infinite family of pairwise non-isomorphic indecomposable Λ_0 -modules. It is not hard to see that $M_{\lambda} \ncong$ tens N_{μ} , for all $\lambda, \mu \in k$. Having in mind the well-known description of the indecomposable Λ_0 -modules, see for instance [7, XI.4], and the fact that $\dim_k e_2 M_{\lambda} = n = \dim_k e_3 M_{\lambda}$, we can see that (i) of Theorem 4.2 does not hold.

Acknowledgements

We thank the referees for their helpful suggestions to improve the writing of this work.

References

- Assem I., Simson D., Skowroński A., Elements of the Representation Theory of Associative Algebras, 1, London Math. Soc. Stud. Texts, 65, Cambridge University Press, Cambridge, 2006
- Bautista R., Pérez E., Salmerón L., On restrictions of indecomposables of tame algebras, Colloq. Math., 2011, 124(1), 35–60
- [3] Bautista R., Pérez E., Salmerón L., On generically tame algebras over perfect fields, Adv. Math., 2012, 231(1), 436-481

- [4] Bautista R., Salmerón L., Zuazua R., Differential Tensor Algebras and their Module Categories, London Math. Soc. Lecture Note Ser., 362, Cambridge University Press, Cambridge, 2009
- [5] Crawley-Boevey W.W., Tame algebras and generic modules, Proc. London Math. Soc., 1991, 63(2), 241-265
- [6] Drozd Yu.A., Tame and wild matrix problems, In: Representations and Quadratic Forms, 154, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, 39–74 (in Russian)
- [7] Simson D., Skowroński A., Elements of the Representation Theory of Associative Algebras, 2, London Math. Soc. Stud. Texts, 71, Cambridge University Press, Cambridge, 2007