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1. Introduction

In this article, we assume that the ground field k is algebraically closed. All our algebras A are associative k-algebras
with unit element, and A-Mod denotes the category of (left) A-modules.

The following situation arises frequently in the representation theory of algebras. Let A be a finite-dimensional algebra
and take any idempotent eq of A. If we make Ay = eg/Aeg, we have the standard restriction functor p: A-Mod — Ag-Mod,
where p(M) = egM, for any M € A-Mod. This functor admits as a left adjoint the functor tens = Aeg®p,—: Ao-Mod —
A-Mod, which is full and faithful, see for instance [1, §1.6].

Let us recall some terminology from [2]. Given a finite-dimensional basic algebra A, over our algebraically closed field k,
there is a semisimple subalgebra S of A such that A admits a decomposition A = S @ rad A of S-S-bimodules. Consider
a decomposition 1 =} __. e of the unit element of S as a sum of central primitive orthogonal idempotents in S, and
let Eo be a subset of E. Then, Eq is called convex if and only if, whenever e”Ae’Ae # 0 with e”,e € Ey and e’ € E, we
have that e’ € E,.
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Given a convex subset Ey of E, we are interested in the algebra A\g = ep/\eg, where eg = 3 e, and we want to

ecky
establish some relations between the categories A-mod and Ag-mod. Notice that /\ is also a basic finite-dimensional
algebra which splits over its radical: Ay = So @ rad Ao, where Sp = egSeg and rad Ag = eg(rad A)eg. The algebra /g is
called convex in \ if Ej is a convex subset of E. Notice that our definition of convexity differs from the one commonly

used in the theory of locally bounded categories.

Given a convex algebra /g in A, the morphism : A — A given by ¢(A) = egAeg, A € A, is a morphism of algebras.
Therefore, we can consider the Ag-A-bimodule /Ay and a new type of natural restriction functor

res = Ng®n—: A-Mod — A\g-Mod.

We denote by P(A) and P(/\) the categories of morphisms between projective A-modules and projective /\g-modules,
respectively. Then, the functors tens and res induce functors Tens: P(Ag) — P(A) and Res: P(A) — P(Ag) such that
res Cok = Cokg Res and Cok Tens = tens Cokg, where Cok: P(A) — A-Mod and Cokg: P(Ag) — Ag-Mod are the cokernel
functors. Moreover,

restens = 1x,-mod

and, then, given M € A-Mod, we have that M = tens res M if and only if M = tens M’, for some M’ € N\o-Mod, see [2].
We keep the notation introduced before for the rest of this paper.

Recall also that, given a A-module G, by definition, the endolength of G is its length as a right Enda(G)°P-module.
The module G is called generic if it is indecomposable, of infinite length as a A-module, but with finite endolength.
The algebra A is called generically tame if, for each d € N, there is only a finite number of isomorphism classes of
generic A-modules of endolength d. This notion was introduced by Crawley-Boevey in [5], providing a new definition of
tameness, which coincides with the usual notion of tameness for finite-dimensional algebras over algebraically closed
fields, but which makes sense for arbitrary algebras.

We will show that given a convex algebra /g in the tame algebra A and any generic A-module G, the Ag-module res G
has finite endolength and either it is generic, or it is a direct sum of some finite-dimensional Ag-modules. This is our
Corollary 4.3; see also the more complete Theorem 4.2.

This theorem is proved using matrix problem methods and we resort to the ditalgebra language of [4]. It is obtained
as a consequence of the discussion of parametric families of modules through realizations proposed by Crawley-Boevey
in [5] and the study of extension/restriction interactions between module categories over a ditalgebra and a proper
subditalgebra presented in [2].

Our Theorem 3.4 for ditalgebras has its own importance because it can be used to study relations of the generic modules
with bounded endolength over a finite-dimensional algebra A, with the generic modules over hereditary algebras. This
can be done in the same way that [2] was used in [3] to relate the corresponding finite-dimensional indecomposables
with bounded dimension.

2. Families of modules

As usual, given any k-ditalgebra A, we denote by A-Mod the category of A-modules, see [4, 2.2]. Recall from [3] the
following definitions.

Definition 2.1.

Let A be a layered ditalgebra, with layer (R, W), see [4, §4]. Given M € A-Mod, denote by Ey = Endg (M) its
endomorphism algebra. Then, M admits a structure of R-Ey-bimodule, where m - (f°, f') = f°(m), for m € M and
(f%, fy € Ep. By definition, the endolength of M, denoted by endol M, is the length of M as a right Ey-module.
A module M € A-Mod is called pregeneric if M is indecomposable, with finite endolength, but with infinite dimension
over the ground field k.
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If B is any k-algebra, we have the corresponding reqular ditalgebra B with layer (B,0). Then, the categories B-Mod
and B-Mod can be identified canonically. If the algebra B is finite-dimensional, the notion of pregeneric B-module
coincides with the notion of generic B-module. For infinite-dimensional algebras, this is not always the case. A recurrent
argument in the reduction techniques used to study modules over finite-dimensional algebras A, passes from the module
category of a ditalgebra A, after some reduction process, to the category of projective presentations, and then to A-Mod.
This process maps pregeneric A-modules onto generic A-modules, see [3].

Notation 2.2.

Throughout this work, given a ditalgebra A = (T, 9), we denote with a roman A the subalgebra [T]y of degree zero
elements of the underlying graded algebra T of A, see [4, § 1]. Then, the categories A-Mod and A-Mod share the same
class of objects, but there are more morphisms in A-Mod. There is a canonical embedding functor L4 : A-Mod — A-Mod,
which is the identity on objects and maps each f° € Homa(M, N) onto L,4(f%) = (f°,0).

It may be the case that for a layered ditalgebra A, an A-module M admits a non-trivial decomposition in A-Mod but
is indecomposable in A-Mod. Thus, it is not always true that the functor L4 preserves indecomposability.

Reminder 2.3.

In this work, we have to deal mainly with seminested ditalgebras A. This means that A admits a layer (R, W) such that:
R is a minimal k-algebra, the layer (R, W) is triangular, the R-R-bimodule W, is freely generated by a finite directed
subset By of W, and the bimodule filtration

WoCWl c...cwpd=w,
corresponding to W in the trianqularity conditions for the layer, see [4, 5.1], is freely generated by a set filtration
BS CB)C...CBY =B,

of a finite directed subset By of Wy. This means that each W{ is freely generated by B}, as in [4, 23.2].

Recall that a rational algebra T is, by definition, a finitely generated localization of the polynomial algebra k[x]. By
definition, a minimal algebra R is a finite product of the form kx --- x kx [y x --- x [, where I'1,...,[; are rational
algebras.

There is a bigraph B attached naturally to any seminested ditalgebra A, see [4, 23.9]. The points in B are in bijective
correspondence with the indecomposable factors of R, and the marked points are by definition those corresponding to
factors which are rational algebras. The sets By and B, are, respectively, the sets of solid arrows and dashed arrows of
the bigraph B (and of the seminested ditalgebra A). The bigraph B of A allows us to describe the category A-Mod as
a category of representations of the bigraph, see [4, 23.10].

Finally, we recall that a ditalgebra A over an algebraically closed field k is tame if, for every d € N, there is a finite
collection {(I';, Z:)}1_,, where I'; is a rational algebra and Z; is an A-I';-bimodule which is free of finite rank as a right
I";-module, such that, for every indecomposable M € A-Mod with dimi M = d, there are an i € [1,n] and a simple
I;-module S with Z;®r,S = M in A-Mod. There are various reformulations of this definition, see [4, § 27].

In the following, we adapt to the context of tame seminested ditalgebras some definitions and results on tame finite-
dimensional algebras due to Crawley-Boevey, see [5, §5]. Some of these adaptations are derived directly from his
results (this is the case of Proposition 2.11); some others use his arguments rephrased for ditalgebras in [4]. Given a
rational algebra ', we denote by Irred I a complete set of inequivalent irreducible elements of I".

Definition 2.4.
Let A be a tame seminested ditalgebra over the field k, as in [4, 23.5]. If G is a pregeneric A-module, a realization Z
for G over the rational algebra I' = k[x]; is an A-I'-bimodule Z, finitely generated as a right -module, such that

G = Z®rk(x) in  A-Mod and endol G = dimy(Z ®rk(x)).
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Remark 2.5.
If A is a layered k-ditalgebra and G = Z®rk(x) in A-Mod, for some A-T-bimodule Z, where I is a rational algebra,
then we have the canonical embeddings of k-algebras

k(x) C Endye (Z@rk(x)) € Enda(Z@rk(x) € Enda(Z®rk(x),
where A¥®) denotes the extended algebra A® k(x), and hence endol G = endol (Z ®r k(x)) < dimgy(Z ®r k(x)).

Theorem 2.6.

Let A be a tame seminested ditalgebra and d € N. Then, there are a minimal ditalgebra B, see [4, 23.5] and an
A-B-bimodule Yy, which is finitely generated as a right B-module, such that, for any G € A-Mod with endol G < d,
there are a B-E-bimodule N with finite length as a right E-module and an isomorphism G = Y;®gN in A-Mod, where
E = End4(G)°®. Moreover, there is a full and faithful functor F: B-Mod — A-Mod such that the following diagram
commutes up to isomorphism:

B-Mod —2> B-Mod

La
A-Mod ———= A-Mod,

where Ly and Ly denote the canonical embeddings.

Proof. Apply[4, 28.22] to any given d, to obtain a minimal ditalgebra B and a reduction functor F: B-Mod — A-Mod
such that, for any k-algebra E, the induced functor FE: B-E-Mod — A-E-Mod is length controlling and, for any
A-E-bimodule G with length < d, there is a B-E-bimodule N such that G = FE(N). By definition, a reduction functor,
see [4, 25.10], is a composition of functors of type F°, F", F? F¢ and FY, corresponding to ditalgebra operations of
type: absorption of a loop, as in [4, 23.16], reqularization, as in [4, 23.15], deletion of idempotents, as in [4, 23.14], edge
reduction, as in [4, 23.18], and unravelling, as in [4, 23.23], respectively. The functors F, F" and F? are full and faithful,
by [4, 8.20], [4, 8.19] and [4, 8.17], respectively. The functors F¢ and F* are full and faithful because they are of type F¥,
where X is a complete admissible module, by [4, 17.12]. It follows that any reduction functor is full and faithful, and so
is F. From [4, 22.7], we get that Y; = F(B) has the structure of an A-B-bimodule, finitely generated as a right B-module,
and the above diagram commutes.

Assume that G is an A-module with endolength < d. If we make E = End,4(G)°, then G is an A-E-bimodule with
length < d as a right E-module, and has the form G = FE(N) for some N € B-E-Mod with finite length. O

Proposition 2.7.
Let A be a tame seminested ditalgebra over the algebraically closed field k and take d € N. Then, if B and Y, are the
minimal k-ditalgebra and the A-B-bimodule obtained by applying Theorem 2.6, with the integer d, we have:

(i) The A-modules of the form G = Y;®5Q,, where Q, is some principal generic B-module, see [4, 31.3(1)] are
pregeneric, and satisfy
Enda G/radEnda G = k(x).

(it) Any pregeneric A-module of endolength < d arises this way.

Proof. (i) For any marked point z of the minimal ditalgebra B, denote by Q, the principal generic B-module at the
point z. Thus, Be, = k{x]s) and Q, = k(x) has a natural structure of a B-k(x)-bimodule. Consider the reduction functor
F: B-Mod — A-Mod of the last theorem, then G = Y,®50, = F(Q,) is an A*¥)-module, finite-dimensional over k(x).
Thus, from Remark 2.5, the A-module G has finite endolength. Proceeding as in the proof of [4, 31.7], we obtain (i).

(i) Let G be a pregeneric A-module with endol G < d. By assumption, we already know that G = Y;®gN, for some
B-E-bimodule N, where E = End4(G)°*. Then, N is a generic B-module and so N = Q,, for some marked point z of B,
by [4, 31.3]. O
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Corollary 2.8.

Assume that A is a seminested ditalgebra over the algebraically closed field k. Then, A is tame if and only if it is
pregenerically tame.

Proof. From Drozd's theorem, A is tame if and only if A is not wild, see [6] and [4, 27.10]. Then, [3, 2.9] gives that
A is tame whenever it is pregenerically tame. Finally, by Proposition 2.7, the tameness of A implies its pregeneric
tameness. O

Remark 2.9.
Let A be a tame seminested k-ditalgebra and G = Z®r k(x) in A-Mod, as in Remark 2.5. Then, from Proposition 2.7,
it follows that

endol G = dimk(x)(Z®r k(X))

In particular, the last equality in the definition of realization can be eliminated.

Theorem 2.10.

Let A be a tame seminested ditalgebra. Then:

(i) For any pregeneric A-module G, there is a realization Z of G, over some rational algebra ', which is free as a
right I’ -module and such that the composition

FMod 2275 A-Mod -4 A-Mod

preserves indecomposables and isomorphism classes.

(ii) For each d € N, there are pregeneric A-modules Gy, ..., G, and, for each i € [1,m], a realization Z; of G;
over a rational algebra T, such that, for almost all indecomposable A-modules M with dimi M < d, we have an
isomorphism M = Z;®r,T;/(p") in A-Mod for some i € [1,m], p € Irred T, and n € N.

Proof. (i) If G is a pregeneric A-module with endolength d, then applying Theorem 2.6, we obtain a minimal
ditalgebra B, a reduction functor F: B-Mod — A-Mod, and an A-B-bimodule Z such that L4(Z®z—) = FLg. From
the last proposition, we know that G = F(Q,), for some principal generic B-module Q,. Consider the rational algebra
I, = Be, = k[xJs. Then, from [4, 22.7], we have the following diagram, which commutes up to isomorphism:

Fz®r,— Ly
.-Mod ——  B-Mod ——— B-Mod

F(r)er,— L

M-Mod —* > AMod ——2 A Mod.

From [4, 31.6], L preserves indecomposables and isomorphism classes. Hence, the composition FLg (I ,®r, —) preserves
indecomposability and isomorphism classes and, therefore, so does the lower row of the diagram L4 (F([,)®r, —).

Moreover, since F is a reduction functor, F(I",) is an A-I",-bimodule which is projective and finitely generated by the
right. Hence, since I, is a principal ideal domain, F(I',) = Z®gl, = Ze, is in fact a free right I',-module of finite rank.
We have in A-Mod the isomorphisms

F(M)®rklx) = La(F(M)®r,Q.) = F(Ls(M.®r,0,) = F(Q,) =G

and dimgy (F(,)®r,k(x)) = rk F(I,) = endol G, see the proof of [4, 31.8]. Thus, the bimodule F(I',) is the wanted
realization for G over [,.

(i) From [4, 29.6], the reduction functor which appeared in Theorem 2.6 also satisfies that, for any indecomposable
A-module M with dimg M < d, there is a B-module N with F(N) = M. Moreover, almost any such finite-dimensional
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indecomposable B-module N is of the form N = I",/(p%), for some marked point z of B, some p € Irred[,, and i € N.
Thus, with the notation of the last argument, for almost any indecomposable A-module M with dim¢ M < d, there is
such an N ZT,/(p'), and M = Ze,®@ N = Ze, Q[ ,/(p'), where Ze, is a realization over the rational algebra I, of the
pregeneric A-module G, = Z®350,. O

Proposition 2.11.

Let \ be a tame finite-dimensional basic algebra over the algebraically closed field k and consider its Drozd’s ditalge-
bra D, as in [4, 19.1]. Let Z; and Z, be realizations of the pregeneric D-modules Gy and G,, over the rational algebras Iy
and [, respectively. If there is an infinite subset P of Irred ', such that, for all p € P, we have

2,®r,0l(p*) = Zi®r,T1/(g,)  in D-Mod,
for some q, € 'y and i, € N, then G, = G;.

Proof. Consider the composable functors D-Mod 2, (N Lok, A-Mod, where =, is the usual equivalence functor

of [4, 19.8] and Cok is the cokernel functor, see [4, 18.10]. From [4, 22.18 (2)], if Z is the transition bimodule, we have
Z®p2,®r, I_2/(Pi”) = Cok E/\[ZZ®F2 I_2/(Pi")] = Cok E/\[21 ®r, ' /(qp)] = Z20pZi®r, /(qp)~
Moreover, for i € [1, 2], the relation G; = Z;®r, k(x) implies that
Cok SA(G)) = Cok SAIZ®r k()] 2 Z®pZ:®r k(x),

where the last term is finite-dimensional over k(x). Thus, Cok =5(G;) is a generic A-module with realization Z®pZ;
over the rational algebra I';. From [5, 5.2 (4)], we obtain that Cok =5(Gy) = Cok =A(G,). Hence, Gy = G,. O

3. Pregeneric modules for Drozd’s ditalgebras

The proof of our main result relies on the following theorem, proved in [2]. It applies to tame seminested ditalgebras
with a proper subditalgebra. Let us recall some terminology from [4].

Definition 3.1.

Let A = (T, 0) be any ditalgebra with layer (R, W). Assume we have R-R-bimodule decompositions Wy = Wy@ W and
Wi = W)@ W/. Consider the subalgebra T’ of T generated by R and W' = Wj@ W,. Then, A" =[T"]y is freely generated
by the pair (R, W;). Let us also assume that o(W;) € AW/A" and o(W]) C AWJAW]A". Then, the differential 6 on T
restricts to a differential 0’ on the algebra 77, and we obtain a new ditalgebra A" = (77, §’) with layer (R, W’). A layered
ditalgebra A’ is called a proper subditalgebra of A if it is obtained from an R-R-bimodule decomposition of W, as we
have just described.

A proper subditalgebra A’ of a triangular ditalgebra A is called initial when its triangular filtrations coincide with the
first terms of the triangular filtrations of A, see [4, 14.8]. The inclusion r: 7" — T yields a morphism of ditalgebras
r: A" — A and, hence, a restriction functor

R, = F,: A-Mod — A'-Mod.
The projection 7: A=[T]p — [T']p = A" yields an extension functor

E} = Fr: A-Mod — A-Mod.
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Theorem 3.2.

Assume that A’ is an initial subditalgebra of the tame seminested ditalgebra A, over the algebraically closed field k.
Then, for any d € N, there is a finite family J(d) of indecomposable A’-modules such that, for any indecomposable
A-module M with dimgM < d and M ¥ Ej(N) in A-Mod, for any N € A’-Mod, the module R7,(M) is isomorphic
in A’-Mod to a direct sum of modules in I(d).

The following lemma is another important ingredient of the proof of our main result.

Lemma 3.3.
Let A be a Roiter ditalgebra with layer (R, W), where W, is a finitely generated R-R-bimodule, over an algebraically
closed field, see [4, 5.5] Assume that AX is obtained from A by reduction, using the A'-module X, where A’ is an
initial subditalgebra of A and X is a finite direct sum of pairwise non-isomorphic finite-dimensional indecomposable
A’-modules, see [4, 12.7-12.9]. Then:
(i) The algebra T = End/(X)%® admits the splitting I = S® P, where P is the radical of T', and AX is a ditalgebra
with triangular layer (S, W¥).

(i) Let FX: AX-Mod — A-Mod be the associated functor, as in [4, 12.10] Then, the A-modules M of the form
M Z FX(N), for some (resp. finite-dimensional) N € AX-Mod, are precisely the A-modules such that its restric-
tion R4,(M) is isomorphic in A’-Mod to a (resp. finite) direct sum of direct summands of X.

Proof. (i) We know that A is a Roiter ditalgebra and, by [4, 12.3], so is A’. Therefore, since k is algebraically
closed, from [4, 17.3], the A’-module X is indeed admissible. Thus, AX and FX are defined. The module X is triangular,
as in [4, 14.6], because S is semisimple. Hence, from [4, 14.10], the ditalgebra AX has trianqular layer (S, W¥).

(it) This follows from [4, 25.5]. See the argument in the proof of [3, 7.3 (2)]. O

Theorem 3.4.

Let \ be a tame finite-dimensional basic algebra over the algebraically closed field k and consider its Drozd’s dital-
gebra D. Assume that D’ is an initial subditalgebra of the tame seminested ditalgebra D and that EZ,(M) = E5,(N)
in D-Mod whenever M = N in D'-Mod. Then, for any d € N, there is a finite family J3(d) of finite-dimensional
indecomposable D’'-modules such that

(i) for any indecomposable D-module M with dimiM < d and M F E5(N) in D-Mod, for any D’-module N, the
module RE,(M) is isomorphic in D’'-Mod to a direct sum of modules of J(d);

(it) for any pregeneric D-module G with endol G < d and G ¥ EB,(H) in D-Mod, for any pregeneric D'-module H,
the module R3,(G) is isomorphic in D'-Mod to a direct sum of modules of I(d).

Proof. From [4, 22.13], we know that D’ is also tame. Fix d € N and apply Theorem 3.2 to D and 7, to obtain a
finite set J(d) = {Xj,..., X} of pairwise non-isomorphic finite-dimensional indecomposable D’-modules satisfying (i).
Let G be a pregeneric D-module such that endol G < d and G ¥ E(H), for any pregeneric D’-module H.

From (i) of Theorem 2.10 there is a realization Z of G over a rational algebra I, which is free finitely generated as a
right M-module. It defines the infinite family of pairwise non-isomorphic indecomposable D-modules

{Z®rT/(p):p € lrred '}

If rkZ denotes the rank of Z as a free right [-module, then rkZ = dimy (£ ®rk(x)) = endol G < d and, for each
p € lrred ', we have that
dim(Z®r[/(p)) < d.

Then, for any p € Irred T with Z®r/(p) # ES(N) in D-Mod, for any N € D’-Mod, the module R}, (Z®r[/(p))
is isomorphic in D’-Mod to a direct sum of modules in J(d). Consider the admissible D’-module X = ;_, X;, the
seminested ditalgebra DX, see [3, 3.4], and the associated full and faithful reduction functor FX: DX-Mod — D-Mod.
Let us first show the following.
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Claim. There is no infinite subset P of lrred I” such that, for all p € P, there is N, € D'-Mod with Z®r T /(p) = E(N,).

Proof of the claim. Assume that there is such a set P. Then, the tame seminested ditalgebra D’ admits an infinite family
{N,},ep of pairwise non-isomorphic indecomposable D’-modules with dim N, < d. Then, from (ii) of Theorem 2.10
there are a pregeneric D’-module ', a realization Z’ of G’, over some rational algebra I, and an infinite subset Q
of Irred I such that, for any ¢ € Q, there are p, € P and i; € N with Z’®p["/(g") = N,,. Then, for all g € Q,
we have

ZQrl(pg) = E(Np,) = EZ’®rT(g") = E(Z)Y®rT"/(g").

Moreover, E(G') = E(Z' ®r k(x)) = E(Z')®r k(x). From Remark 2.9, we have that £(G’) is a pregeneric D-module with
realization £(Z’) over [". Then, from Proposition 2.11, we obtain that £(G’) = G, contradicting our initial assumption.
This ends the proof of our claim. ]

Then, there are infinitely many elements p € Irred " such that
Z®rl/(p) F E(N) for any N € D’-Mod.

Hence, there is an infinite subset P C Irred I such that, for any p € P, the module RY,(Z®r[/(p)) is isomorphic
in D’-Mod to a direct sum of direct summands of X. From Lemma 3.3, we know that, for each p € P, there is a
DX-module L, with Z&r/(p) = F¥(L,).

The tame seminested ditalgebra DX admits the infinite family {L,},cp of pairwise non-isomorphic indecomposable
DX-modules with bounded dimension. From (ii) of Theorem 2.10, there are a pregeneric DX-module G, a realization 2’
of G, over some rational algebra ", and an infinite subset Q of Irred " such that, for any g € Q, there are p, € P and
iq € N with

Z'@r (") = Lp,.

Thus, for g € Q, we have
Z®rT/(pg) = FX(Ly,) = FXZ'®rT'1(g")) = FX(Z)®rT"(q").

Moreover, FX(G') £ FX(Z' ®r k(x)) £ FX(Z')®r k(x). From Remark 2.9, we obtain that FX(G’) is a pregeneric D-module
and FX(Z') is a realization of FX(G’) over I". Then, from Proposition 2.11, we obtain that FX(G’) = G. Hence, from
Lemma 3.3, the module R2,(C) is a direct sum of direct summands of X in D’-Mod. O

4. Main result for algebras

The first statement of the following theorem was proved in [2]. The proof of the fact that the same set Jy(d) works for the
second statement is somehow parallel to the proof given in [2, 4.1]. For the benefit of the reader, we provide a complete
proof, after recalling some constructions from [2].

Reminder 4.1.

Let D = (T, 0) be a seminested ditalgebra with layer (R, W) and set of points P. Assume that D’ = (7', ") is a proper
subditalgebra of D associated to the R-R-bimodule decompositions Wy = Wy@ Wy and Wy = W@ W,". Then, the
subditalgebra D’ is called convex if there is a subset Py of P such that eWje = W and eWje = W], where e is the
central idempotent e =} _; e, of R. It follows that D’ is seminested.

If D’ is a convex subditalgebra of the seminested ditalgebra D, the morphism of algebras n: T — T’ determined by
the projection of R-R-bimodules W — W’ is a morphism of ditalgebras n: D — D’, which induces a restriction functor
Fy: D’'-Mod — D-Mod with Fy(M) = EB (M), for M € D'-Mod. Thus, E5 (M) = E5(N) in D-Mod whenever M = N
in D'-Mod.

Moreover, if we write f =1 — e, we get R = Re x Rf and an isomorphism of ditalgebras D’ = D¢ x D/, where D¢ and

D’ are ditalgebras with layers (Re, W’) and (Rf,0), see [2, 5.2]. In particular, the category D'-Mod can be identified
with Rf-Mod.
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Since D’ Z D¢ x D!, we can consider the projection morphisms 7¢: D’ — D¢ and x': D’ — D’. The induced functors
Fe: D¢-Mod — D’-Mod and F': D'-Mod — D’-Mod determine an equivalence of categories

D*-Mod x D'-Mod —25 T’_Mod

described in [4, 10.3].

Now, assume that A is a basic finite-dimensional algebra over the algebraically closed field k and /\q is a convex algebra
in A. Then, there are a convex subditalgebra D’ of the Drozd ditalgebra D of A and a functor =': D’-Mod — P'(A¢)
such that the following diagram commutes up to isomorphism:

= Cok

D-Mod PUA)

Rg, \L Resl ires

D'-Mod —=— P'(Ag) —% Ag-Mod,

where =, is the usual equivalence, see [4, 19.8], and Res is the restricted lifting of res, see [2, 2.1 and 5.3]. The functor
=’ is constructed as the composition

D' -Mod 5 De-Mod ~% D™-Mod —% P1(A),

where H is the projection, F, is the functor induced by an isomorphism of seminested ditalgebras ¢: D" — D®, and
=), is the usual equivalence.

Let us also recall that, given the convex subditalgebra D’, we can modify the trianqular filtrations of D, obtaining a
different seminested ditalgebra D with the same underlying ditalgebra D, such that D’ is an initial convex subditalgebra
of D. Thus, D and D coincide as ditalgebras and share the same layer (but with different triangular filtrations). In
particular, we have that D-Mod = D-Mod and R, = R3,. See [2, 5.4].

Theorem 4.2.

Assume that A is a tame finite-dimensional basic algebra over an algebraically closed field k. Suppose that /\y is a
convex algebra in \. Then, for any d € N, there is a finite family Jo(d) of finite-dimensional indecomposable No-modules
such that

(i) for any indecomposable A-module M with dim¢ M < d and M % tens N, for any N\g-module N, the module res M is
isomorphic to a direct sum of modules in Jo(d);

(ii) for any generic A-module G with endol G < d and G % tens H, for any generic N\g-module H, the module res G is
isomorphic to a direct sum of modules in Jy(d).

Proof. We adopt the notations introduced in Reminder 4.1. Thus, D is the Drozd ditalgebra associated to the
algebra A. Since A is tame, from [4, 27.14], so are D and D (recall that D-Mod = D-Mod).

Fix d € N. Then, we apply Theorem 3.4 to d’ = (1+ dimg A) x d, to obtain a finite family J'(d’) of finite-dimensional
indecomposable D’-modules such that, for any pregeneric D-module H with endol H < d’" and H ¥ EB(H’), for any
pregeneric H" € D’-Mod, we have that Rg(H) is isomorphic to a direct sum of indecomposables of J'(d’). Notice that we
really need to replace D by D, first, in Proposition 2.11 and, after, in Theorem 3.4, before we can derive the preceding
statement for the tame seminested ditalgebras D’ and D.

Since D’-Mod is equivalent to the product category D°-Mod x D'-Mod, we can consider the subfamily J”(d’) of 7'(d")
obtained from this last one by excluding all the indecomposables from Df-Mod, as well as all the indecomposables
N’ € D°-Mod such that =5, F,(N’) has the form Q — 0. Then, J(d) = Coky ='7"(d’) is a finite family of finite-dimensional
indecomposable Ag-modules.

Take any generic A-module M with endol M < d such that M Z tens H, for any generic Ag-module H. Let us show that
res M is isomorphic to a direct sum of Ag-modules in I(d). Consider a minimal projective presentation Q" - Q - M — 0
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of M. Then, there is an N € D-Mod = D-Mod such that ZA(N) = (Q"— Q) and Cok ZA(N) = M. Since M is
indecomposable, so is N. Then, from [3, 4.4}, we obtain endol N < endol M x (1+ dimg A) < d'.

Suppose that N = Eg,(N’), for some pregeneric N € D’-Mod. There is an isomorphism N’ = F¢(N°)@ Ff(N7)
in D’-Mod, for some N¢ € D¢-Mod and N/ € D'-Mod, which is preserved by the functor Eg,. Then, N = EDE,(N’) =
EBFe(N®)®ED F/(N') and, since N is indecomposable, we have that N© = 0 or N’ = 0. If N" # 0, we obtain N® = 0
and N’ is indecomposable. In order to justify this last statement, assume N’ decomposes non-trivially, it does so
in D'-Mod, hence F'(N') has a non-trivial decomposition in D’-Mod, which is preserved by Eg,, contradicting again the
idecomposability of N. This argument is not superfluous, because the domain of Eg, is D’-Mod not D’-Mod, thus we need
to show that the decomposition of F'(N') occurs in fact in D’-Mod. Since D has no marked points, that is R is a product
of copies of k, the D'-module N’ is one-dimensional. Thus, F/(N) is a one-dimensional module, corresponding to a
point of D’, not in De. Then, its extension N = Eg,F'(N') is again such a one-dimensional D-module: a contradiction
because N is infinite-dimensional. Then, we can assume that N/ = 0 and, hence, N = Eg,Fe(Ne).

As indicated in the proof of [2, 6.1], for any N® € D*-Mod, we have
SAEDFe(N®) = Tens =5 (N°),

where Tens: P(/\g) — P(A) is the functor induced by tens on the categories of morphisms between projectives, see [2, 2.5].
Now, we apply this claim to our previously fixed N¢ to obtain SA(N) = EAEgFE‘(N*’) = Tens =p,(N®). Therefore, using [2,
25], we get

M = Cok =A(N) = Cok Tens =5, (N°) = tens Cok =5, (N°),

which leads to a contradiction: Indeed, N® is a pregeneric D¢-module because N’ is a pregeneric D’-module; thus,
Cok =5, (N°) is a generic Ag-module.

Then, N # Eg(N’), for any pregeneric N’ € D’-Mod, and Rg(N) = @, N;, for some indecomposable D’-modules
N; € I'(d"). From the commutativity up to isomorphism of the diagram given in Reminder 4.1, it follows that

res M = res Cok Z5(N) = Cok Res Zp(N) = Cok Z'RT,(N) = @) Cok =/ (N),

which is a direct sum of modules in J(d), and we are done. O

We immediately obtain the following.

Corollary 4.3.

Assume that A is a tame finite-dimensional basic algebra over an algebraically closed field k. Suppose that )\ is a
convex algebra in \. Then, for any generic A-module G, either the No-module res G is a generic \g-module or res G is
a direct sum of finite-dimensional indecomposable No-modules.

Remark 4.4.

Under the assumptions of the last corollary, for any A-module M, we have
endol res M < dimy Ag x (14 dimg A) x endol M.

Indeed, assume that endol M = d is finite and keep in mind the notations of Reminder 4.1. Choose an indecomposable
N € D-Mod with Cok =5(N) = M. Then, by [3, 2.2 and 4.4], we have endol RL,(N) < endol N < (14 dimg A) x d. As
before, we have res M = Coko ='R3,(N) and then, using [3, 4.4], we obtain endolres M < dimi Ao x endol RD,(N).

Finally, we show an example of a wild finite-dimensional algebra /A and a convex algebra /g in A for which the conclusions

of Theorem 4.2 do not hold.
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Example 4.5.
Consider the path k-algebra A of the quiver

and the convex algebra Ag in A determined by the subquiver

2 T2 3.
0

Then, we have the generic A-module G corresponding to the representation

k() S k(x) T/ k()
Id Id

with Endy G = k(x) and endol G < 3. The algebra /A is in fact cofinal in A, as in [2, 1.1]. Then, from [2, 2.3]
the restriction res = Ag®x—: A-Mod — Ag-Mod is isomorphic to the standard restriction functor, which maps each
M € A-Mod onto (e, + e3)M. Here, eq, e, e3 denote the canonical primitive orthogonal idempotents of A, corresponding
to the vertices 1,2, 3, respectively, thus e,+ e3 is the unit element in /. Hence, the Ag-module Gy = res G is given by
the representation ;
k(x) /3 k(x)

Id
and it is a generic Ag-module. Since /g is tame hereditary, we know that Gy is the unique generic Ag-module, up to
isomorphism, see [5, 1.5]. But G Z tens Gy because they are not isomorphic as right k(x)-modules. Indeed, the elements
a®e; and B®e; are k(x)-linearly independent, thus dim,(,) es tens Gg > 2 > dimy,) e1G. All this means that item (ii)
of Theorem 4.2 does not hold here.

In order to see that item (i) of Theorem 4.2 fails too for A and /A, we can consider a fixed n € N and the family {M)},ex
of indecomposable A-modules with dim, M, = 3n given by the representations

y Jn(A) X In(A) L
In In ’

where J,(A) denotes the Jordan block with eigenvalue A of size n x n. For each A € k, the restriction N, = resM, is

given by the representation )
kn ”—) kn
.
//7
Then, they constitute an infinite family of pairwise non-isomorphic indecomposable Ag-modules. It is not hard to see
that M, % tens N, for all A, p € k. Having in mind the well-known description of the indecomposable Ag-modules, see

for instance [7, X1.4], and the fact that dim e;M, = n = dim; e3M,, we can see that (i) of Theorem 4.2 does not hold.
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