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Detecting and counting elliptical objects are an interesting problem in digital image processing. There are real-world applications
of this problem in various disciplines. Solving this problem is harder when there is occlusion among the elliptical objects, since
in general these objects are considered as part of the bigger object (conglomerate). The solution to this problem focusses on the
detection and segmentation of the precise number of occluded elliptical objects, while omitting all noninteresting objects.There are
a variety of computational approximations that focus on this problem; however, such approximations are not accurate when there
is occlusion. This paper presents an algorithm designed to solve this problem, specifically, to detect, segment, and count elliptical
objects of a specific size when these are in occlusion with other objects within the conglomerate. Our algorithm deals with a time-
consuming combinatorial process. To optimize the execution time of our algorithm, we implemented a parallel GPU version with
CUDA-C, which experimentally improved the detection of occluded objects, as well as lowering processing times compared to the
sequential version of the method. Comparative test results with another method featured in literature showed improved detection
of objects in occlusion when using the proposed parallel method.

1. Introduction

The use of a computer to automate certain tasks originally
done by hand has led to, among other clear advantages,
increased reliability, reduced cost and time investment, and
more precise results. Additionally, the workload performed
by users can be reduced and the physical strain that would
normally be incurred can be avoided. This study presents the
parallelization of a detection method for ellipses that are in
occlusion with other objects. This method is very helpful for
solving problems and increasing efficiency in a wide range
of areas. For example, in microbiology and biomedicine it
is common to analyze blood samples by counting cells that
are semielliptical in shape [1, 2]. This is a time-consuming
manual task that can lead to eyesight problems and inaccurate
results over a long period [3]. Several approximations have
been presented which try to tackle these specific issues; for

example, in [2] a cell detection method is proposed in which
initial preprocessing is used to differentiate among objects
(in this case, cells) and the image background for which it is
necessary to combine an initial group of images using mul-
tifocal image fusion techniques. In addition to this first step,
a better adjusted ellipse is obtained for each object using a
method defined as robust ellipse fitting using aHeteroscedas-
tic Errors-In-Variables (HEIV) regression algorithm. Other
applications can be found in computing areas such as intelli-
gent systems to recognize elliptical and semielliptical objects
in real contexts, as well as many others. There are numerous
methods currently being outlined in literature which aim to
solve this general problem using different approximations.
For example, in 2015 Bera [4] presented a method which
facilitated the detection and counting of circular objects in
partial occlusion.The author proposed a methodology based
on finding the centroid of the conglomerate and, from this
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point, calculating the necessary strategic points on the outline
of conglomerate to start the circle detection process via
geometric properties. However, the author indicated that the
method did not work if the circular objects were in occlusion
with other noncircular objects. Also, the method used to
obtain the strategic points on the outline can eventually miss
certain values. In [5] a similar method was presented for
use in the analysis of phytoplankton images. In this case the
objective was to count said species (circular in shape) using
high resolution images based on a phase of circular object
detection, stochastic optimization of the outline of object, and
object classification. Similar methods have been proposed in
[3, 6], in which the process is carried out by obtaining certain
values and applying equations that provide an estimate of
the total objects in the conglomerate. Conversely, in [7] a
method is presented for the detection of ellipses which is
based on sorted merging strategy. The proposed methodol-
ogy consists of receiving an image of outlines, linking the
outlines into a single group of points, dividing this group
into small segments, and then combining them to generate
possible elliptical arcs or straight lines and adjust all possible
ellipses. For the adjustment of ellipses, a least squaresmethod
is used to correctly process situations that the proposed
methodology generates. The proposed method improves the
accuracy of the elliptical object count compared to a similar
method presented in the literature [4]. The parallelization
of algorithms that involve high computational complexities
due to combinatorial processes as is the case of the proposed
method can be reduced in time depending on the granularity
of parallelism.

In this work, we propose a method to count elliptical
objects in a conglomerate. Using two input images (base
ellipse and the conglomerate), objects counting is carried out
by analysis and adjustment of arcs combination (outline
points of conglomerate) to the base ellipse. Since the pro-
posed method possesses a high computational complexity,
a parallel implementation is developed using NVIDIA GPU
(Graphics Processing Unit) and CUDA (Compute Unified
Device Architecture). Computer simulation and experimen-
tal results obtainedwith the proposedmethod are analyzed in
terms of accuracy and speedup.We showed that the proposed
parallel method is capable of counting elliptical objects with
a good accuracy in real time.

This paper is organized as follows: Section 2 gives a
detailed description of the sequential method for counting
ellipses in occlusion, as well as a description of its initial order
of complexity, Section 3 describes the use of parallel com-
puting with CUDA-C and the GPU, Section 4 describes the
parallelization of the sequential method, Section 5 shows
the experimental results, and Section 6 presents conclu-
sions.

2. The Sequential Algorithm for
Counting Ellipses with Occlusions

In general, the algorithm receives two input images; the first
contains an independent ellipse with no occlusion represent-
ing the ellipse that the method aims to detect within the con-
glomerate (this image will be referred to as the base ellipse),

and the second image contains the objects in occlusion with
each other, that is, the conglomerate. Preprocessing is done
on both images and following this (using the information
obtained from the preprocessing) a combinatorial process of
points and ellipse adjustments is performed to obtain ellipses
which could be candidates for detection. We selected, using
a defined minimum error, the ellipses found to be similar
to the base ellipse. Figure 1 illustrates the methodology of
the algorithm for the counting of objects in the presence of
occlusion.

The algorithm is divided into seven steps, which are
described below.

(1) Obtain the Image. We obtained two images, correspond-
ing, respectively, to the base ellipse and the conglomerate to
be analyzed.The algorithm works on the images in black and
white; hence the two input images are binarized (without loss
of generality we use binarized images as input of our algo-
rithm). To obtain the binary images when we perform real
experiments, we use Otsu’s method; however, it is possible to
use other image binarization techniques [8–11] according to
initial conditions of the input real image (e.g., low contrast,
low resolution, high luminosity, and shading). Figure 2 shows
an example of input to the algorithm. Figure 2(a) shows
the base ellipse and Figure 2(b) shows the conglomerate to
be analyzed. The base ellipse will be useful in step (4) to
determine the possible ellipses present in the conglomer-
ate.

(2) Obtain Singular Concavity Points (SCPs). A singular con-
cavity point is a point of intersection or cut-off point between
two or more overlapped objects [3]; Figure 3 shows a con-
glomerate of two objects in which arrows mark the SCPs
present. The aim of this step is to obtain such data, and to
do so we employed a method proposed in [12] which uses
trigonometric properties to detect abrupt changes in the
curvature of the outline of conglomerate. The result of this
step is the detection of the geometrical positions of the SCPs
within the conglomerate. The total number of SCPs will
be represented by n (singular concavity points), for future
reference.

(3) Arc Generation. In this step, we first detected the outline
of the conglomerate using a basic process of mathematical
morphology [8]. Next, having established the positions of the
SCPs in the conglomerate, we obtained the arcs. An arc is
a pixel path that goes from SCP𝑗 to SCP𝑗+1 in such a way
that it crosses the outline of the conglomerate.The number of
arcs will be equal to 𝑛, that is, the number of detected SCPs.
Figure 4 shows the outline of a conglomerate with arrows
showing the arcs present.

(4) Arc Combination. The following is a general description
of this step which starts with a combinatorial process among
all the obtained arcs, giving in total of 2𝑛 − 1 necessary
combinations, where 𝑛 is the number of SCPs. Each com-
bination is formed by a group of 𝑘 points (the sum of the
points in each arc which includes the combination). Using
the exhaustive method of ellipse adjustment with minimum
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(1) Obtaining the input image (3) Generating the arcs (4) Combination between
arcs (adjustment of
ellipses)

(5) First selection criterion(6) Second selection criterion(7) Total ellipses detected

(2) Obtaining the SCPs

３＃０1 = (x1, y1)

３＃０4 = (x4, y4)

３＃０2 = (x2, y2)

３＃０3 = (x3, y3)

Figure 1: Methodology used in the sequential algorithm for the counting of elliptical objects in the presence of occlusion. A conglomerate of
two elliptical objects is used.

(a) (b)

Figure 2: Example of input to the algorithm for the counting of ellipses in occlusion. (a) Image of base ellipse. (b) Image of the conglomerate
containing two objects for detection.

squares proposed in [13], we obtained the equation for the
ellipse best adjusted to the points of the 𝑖th combination with
1 ≤ 𝑖 < 2𝑛. Each equation is composed of the coordinates
of its center (𝐶𝑥𝑖, 𝐶𝑦𝑖), the length of its radii (𝑅𝑥𝑖, 𝑅𝑦𝑖),
and the angle 𝜃𝑖 of rotation of the ellipse. Notice that our
technique is feasible when the number of conglomerated
objects is low. Otherwise, our technique is not feasible,
because of the execution time of our algorithm. For such a
case, metaheuristics like evolutionary computation are tradi-
tionally used to obtain a good solution (not necessarily the
optimal) in low execution time. To the best of our knowledge,
no evolutionary strategy has been used to objects count-
ing (particularly in arc combination step), when occlusion
occurs.

Performing the step described above proves more time-
consuming than any other in the whole algorithm, given that
it is necessary to iterate 2𝑛 − 1 times, and for each iteration

first the corresponding combination of arcs is generated and
then the ellipse best adjusted to the points conforming to
the combination is generated. This means it is possible to
estimate the total runtime of the algorithm, which is defined
specifically as (2𝑛 − 1) + 𝑘(2𝑛 − 1), where the first part of the
expression (2𝑛 − 1) represents the time required to generate
the combination, while 𝑘(2𝑛 − 1) is the time required to
obtain the corresponding equations for each combination.
The value 𝑘 refers to the time needed for the algorithm in
[13] to obtain an equation from the total number of input
points. The maximum value possible for 𝑘 is given by the
total number of points in the outline of the conglomerate
and corresponds to the combination that includes all the
arcs.

The evident disadvantage of this process is the large num-
ber of combinations requiring analysis. Upon considering the
different options for streamlining the process, we devised the
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Figure 3: Conglomerate of two elliptical objects. Trigonometric
properties generated four SCPs.

３＃０1

３＃０4

３＃０2

３＃０3

Figure 4: Arcs in a conglomerate of two elliptical objects. The
number of arcs is equal to the number of SCPs.

following restriction using information from the base ellipse
to restrict the amount of required combination processing
(this relates to whether or not the 𝑖th combination should
have an ellipse adjusted to it):

If the total points in the 𝑖th combination are
fewer than or the same as the total points in
the base outline of ellipse, said combination will
be analyzed, and if not, the combination will be
discarded.

With this restriction added, it is possible to reduce the total
number of combinations requiring analysis and determine
whether they represent ellipses to be counted or not, while
at the same time reducing the total runtime without the
use of parallel computing. It is important to mention that
this restriction does not affect the result of the algorithm,
because by discarding combinations with numbers of points
greater than those on the base outline of ellipse, all poten-
tially incongruous ellipses are essentially being discard-
ed.

The order of time complexity of an algorithm allows
comparison of efficiency and performancewith other existing
methods from a theoretical point of view [14]. Therefore, the
total runtime of the algorithmwith the base ellipse restriction
can be described with the expression (𝑚𝑛4) + (2𝑛 − 1), in
which 𝑚 represents the total number of points in the 𝑖th
combination whose maximum value (the worst case) is the
perimeter of the base ellipse (the added restriction limits the
size of each combination to the total number of points in the
base outline of ellipse), which is much lower than 𝑘 (𝑚 ≪ 𝑘).
The value 𝑛4 represents the new number of combinations that
must be analyzed with the ellipse adjustment method (𝑛4 was
obtained from a polynomial that describes the total increase
in combinations complying with the base ellipse restriction,
through the generalized method of adjustment of minimum
squares for polynomials). The expression (2𝑛 − 1) represents
the part of the algorithm responsible for generating the
combinations.

The reduction in processing occurs in the section of the
algorithm responsible for analyzing and making the ellipse
adjustments for the selected combinations; however, it is
still necessary to generate the 2𝑛 − 1 combinations to verify
which ones comply with the base ellipse restriction. This,
despite being lower than 𝑘(2𝑛 − 1), now becomes the most
time-consuming step of the algorithm, and accordingly the
order of time complexity of the algorithm can be defined as
𝑂(2𝑛).

Notice that theoretically there seems to be no significant
time reduction gained by adding the restriction because
the order of complexity is still defined as an exponen-
tial function; however, once implemented this restriction
does provide significant gains in terms of the total run
time.

(5) First Selection Criterion. This first step takes the group of
points in the outline and then using the method proposed in
[13] determines the equation for the ellipse best adjusted to
the base ellipse.

For the ellipses obtained in the previous step, their radii
will be compared with the radii in the base ellipse equation
and if the difference is less than a predefined threshold of 𝑇,
the equation is preselected for counting. All other equations
are discarded.

(6) Second Selection Criterion. The second selection criterion
aims to filter out the equations selected in the previous
step which represent the same object in the image. When
an equation is selected, we need to mark the arcs forming
the combination from which the equation comes as used.
The equation is discarded if the next equation is preselected
and the original combination is formed by an already used
arc.

(7) Number of Semicircular or Elliptical Objects. In this step,
only those equations that survived the previous step are
counted. They are superimposed onto the original input
image of the conglomerate and the result is shown to the
user.
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Table 1: Types of memory available in a GPU with CUDA and the speeds they support. Data obtained from reference in [11].

Registers Shared memory Texture memory Constant memory Global memory
Bandwidth ∼8 TB/s ∼1.5 TB/s ∼200MB/s ∼200MB/s ∼200MB/s
Latency 1 cycle 1 to 32 cycles ∼400 to 600 ∼400 to 600 ∼400 to 600

Figure 4 illustrates the methodology of the algorithm
for the counting of objects in the presence of occlusion.
The programming codes and the images used can be con-
sulted in the following link https://github.com/joselopmart/
CountEllipses.git.

3. Programming GPUs with CUDA

The Graphics Processing Unit (GPU) is a hardware device
that has become a very cost-effective way to obtain high
capacity computing power. A GPU does not differ greatly
from a cluster in terms of its architecture; essentially it is
comprised of a number of Streaming Multiprocessors (SMs).
Each SM has its own L1 cache memory as well as an L2 cache
memory for communicationwith other SMs. An SM is gener-
ally made up of eight or more Streaming Processors (SPs),
also known as CUDA cores [15]. Generally, a GPU is made
up of multiple SMs, and as each SM can support concurrent
executions of thousands of processing threads, this gives the
GPU considerable value as a device for intensive parallel
computing [16].

CUDA is a platform for the development of parallel
algorithms in C language created by theNVIDIA company, to
allow users, exploiting the computing capacity of their GPUs
and meeting the need for a computing language capable of
using their graphics units for general purposes (GPGPU)
[15]. CUDA uses a variant of the SIMD (Single Instruction,
Multiple Data) parallel systems model based on the use of
threads, warps, blocks, grids, and kernels [15, 17].

Generally, in CUDA the CPU is referred to as the host,
while the GPU is named as the device [17]. For the device
to execute a given task in parallel, first it is divided into
subtasks, these are assigned to concurrent processing threads,
which are then grouped into blocks. In turn, the blocks are
grouped into warps, and finally each warp is assigned to an
SM to be executed [17]. Finally, to execute a parallel process
in the device, first the process must be initiated from the host
via the definition and call of a kernel. We then provide the
total number of blocks and threads per block to be used.
Depending on the nature of the parallelized task, the number
of blocks and threads can be grouped into grids of specific
dimensions.

The CUDA platform offers several types of memory to
the programmer, which vary in usefulness according to the
specific characteristics of the algorithm in question. Table 1
shows the types of memory, bandwidth, and latency sup-
ported by CUDA, with [15] used as a reference.

In practice, memory use varies according to the charac-
teristics of themethod and it is necessary to take into account
certain restrictions; for example, the use of registers is limited

to a reduced memory space but it offers the best possible
speeds, while globalmemory offers the greatest space possible
but the lowest speeds. Often, using the wrong memory type
can cause the parallelized method to generate increased
synchronization, copying, and writing times compared to the
algorithm methodology itself.

4. The Parallel Algorithm for
the Counting of Ellipses

Analysis and adjustment for each combination happen inde-
pendently of the other combinations; this means it is possible
to employ parallelism during their execution. However,
owing to the base ellipse restriction, a load imbalance would
be generated [18] as some processors would not be carrying
out tasks when assigned combinations that did not pass the
defined restriction.

The best alternative for parallelization would be to first
ascertain the group of combinations that comply with the
base ellipse restriction. Once this group is established, pro-
cessing is carried out using parallelism to obtain the corre-
sponding ellipse and complete the corresponding process.
The application of parallelism to the algorithm has been
refined into three steps described below.

(1) Definition of Parallelism Level. This step begins after
preprocessing (binarization, establishing the SPs, establishing
the arcs, etc.). First it is necessary to define a constant positive
integer namedMAX THREADS, which will represent the
maximumnumber of processes to be executed in parallel. For
the CUDA programming platform, this value is associated
with the number of processing threads being used. The value
should be a multiple of 2.

(2) Selection of the Combinations That Comply with the Base
Ellipse Restriction.The combinations that have complied with
the base ellipse restriction are obtained. This process is done
by checking whether the total number of points that form the
𝑗th combination complies with the base ellipse restriction,
where 0 < 𝑗 < 2𝑛 (𝑛 being the number of SCPs). This means
that the algorithm must generate the 2𝑛 − 1 combinations
to determine which ones comply with the aforementioned
restriction. Notice that there is no attempt to change this
part of the methodology (generate the 2𝑛 − 1 combinations)
because it represents a fundamental process for the counting
algorithm.

Parallelism is applied to this step as follows:
(2.1)The firstMAX THREADS combinations are selected

from the 2𝑛 − 1 total.

https://github.com/joselopmart/CountEllipses.git
https://github.com/joselopmart/CountEllipses.git
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Input: Ieb, Ic
Output: Ieg, TE
Begin
(1) SCPs = get scps (Ic)
(2) ARCS = arc generation (Ic, SCPs)
(3) base eq = base equation ellipse (Ieb)
(4) 𝑛 = SCPs.length
(5) MAX THREADS =Themaximum number of processes to be executed in parallel.
(6) iter = 1
(7) while iter < 2𝑛:
(8) total combvalids = 0
(9) while 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑏V𝑎𝑙𝑖𝑑𝑠 < 𝑀𝐴𝑋 𝑇𝐻𝑅𝐸𝐴𝐷𝑆:
(10) COMBVAL TMP = kernel comb valids⋘MAX THREADS processes⋙ (iter, ARCS, base eq)
(11) total combvalids + = COMBVAL TMP.length
(12) COMBVAL.add (COMBVAL TMP)
(13) iter + = MAX THREADS
(14) end
(15) EQ ELLIPSES 1CS TMP = kernel adjust ellipses⋘MAX THREADS processes⋙ (COMBVAL, base eq)
(16) EQ ELLIPSES 1CS.add (EQELLIPSES 1CS TMP)
(17) end
(18) EQ ELLIPSES SEL = verify 2cs (EQ ELIPSES 1CS)
(19) TE = EQ ELLIPSES SEL.length
(20) Ieg = graph equations (Ic, EQ ELLIPSES SEL)
End

Pseudocode 1: Parallel algorithm for the counting of elliptical objects in occlusion.

(2.2) In parallel, each of the MAX THREADS combina-
tions is analyzed by a processor to check whether it complies
with the base ellipse restriction. Those that comply are
marked as valid.

(2.3) Combinations marked as valid are saved contigu-
ously to obtain their corresponding ellipse equation. Com-
binations marked as nonvalid are discarded.

(2.4) Once the previous parallel process ends, this pro-
cedure is followed: if the total number of saved combina-
tions from step (2.3) does not surpass the MAX THREADS
combinations, the following group ofMAX THREADS com-
binations from the 2𝑛 − 1 total combinations is analyzed
(repeated from step (2.1)).

(2.5) Once the maximum number of MAX THREADS
combinations complying with the restriction is obtained, or
there are no more combinations to be evaluated with the
restriction, the next stepwill be step (3). If combinations from
the 2𝑛−1 total remain unverified according to the restriction,
then once step (3) is finalized, the missing combinations are
reexamined and the process is repeated.

Ideally, for this step to be executed only once,
MAX THREADS should be higher than the value for the
total combinations complying with the base restriction.

(3) Obtaining the Equations for the Ellipses. Once the previous
step is finalized, we have a group of combinations complying
with the base ellipse restriction whose maximum size is
MAX THREADS.

In the next step we obtain the equation for the ellipse
best adjusted to each combination of the generated group, an
action which, in the original sequential method, represented
the costliest stage in terms of resources. In this step each of
the obtained combinations is analyzed in parallel as described
below.

(3.1) For each combination, using the method from [13],
the equation for the best adjusted ellipse is obtained com-
prising the following five values (𝐶𝑥𝑖, 𝐶𝑦𝑖, 𝑅𝑥𝑖, 𝑅𝑦𝑖, and 𝜃𝑖),
where 𝑖 represents the 𝑖th combination of the combination
group obtained in step (2), with 0 < 𝑖 < 𝑀𝐴𝑋 𝑇𝐻𝑅𝐸𝐴𝐷𝑆.

(3.2) The first selection criterion (as described in Section
2) is applied to each of the obtained equations. Those equa-
tions complying with this criterion are marked as valid and
preselected to be potentially used in the postprocessing steps.

Upon finishing the parallel processing, those ellipse equa-
tions marked as valid are recovered and saved to continue
with the subsequent steps in the ellipse-counting method. If
combinations still require processing from step (2), then the
process described in step (2.5) will be performed.

Once the parallel processing described in steps (1), (2),
and (3) is complete, the original ellipse-counting method is
continued, beginning with the execution of step (6) from the
original method (described in Section 2) in which the second
selection criterion is applied to the preselected equations.
Finally, step (7) of the global method is performed to obtain
the final result (as described in Section 2).

Shown in Pseudocode 1 are the general steps for the
parallel algorithm. There are two input images Ieb and Ic
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corresponding to the base ellipse image and the conglomerate
image, respectively. First, the singular concavity points are
obtained in the SCPs vector, for which image Ic (line (1)) is
required. Then, in the ARCS vector, the arcs generated from
conglomerate Ic are stored, likewise the singular concavity
points in SCPs.

In line (3), base eq represents the base ellipse equation
that is obtained from the input base ellipse image Ieb.
The value n represents the total SCPs obtained (line (4)).
MAX THREADS represents the maximum total number of
processes that is possible to execute in parallel.

The iter variable allows control over the number of com-
binations that have been processed from the 2𝑛 − 1 total
(lines (6) and (7)). From line (8) to line (14) we define the
procedure required to obtain the firstMAX THREADS com-
binations complying with the base ellipse restriction. For this,
total combvalids allows control to be kept when obtaining a
maximum number of valid MAX THREADS combinations
(lines (8) and (9)).

The kernel comb valids function is executed in par-
allel with MAX THREADS processes which are specified
between the symbols “⋘” and “⋙” in order to verify
whether the combinations 𝑖𝑡𝑒𝑟, 𝑖𝑡𝑒𝑟 + 1, 𝑖𝑡𝑒𝑟 + 2, . . . , 𝑖𝑡𝑒𝑟 +
𝑀𝐴𝑋 𝑇𝐻𝑅𝐸𝐴𝐷𝑆−1 comply with the base ellipse restriction.
To generate the combinations and verify this restriction
it is necessary to provide the following data parameters:
the number of the first combinations to be verified by
iter, the ARCS to generate the corresponding combinations,
and the base ellipse equation base eq to verify the base
ellipse restriction (line (10)).The combinations that complied
with the restriction are saved in COMBVAL TMP which
can vary in size for each iteration of the cycle in line
(9). In line (11), the total number of combinations is in-
creased.

For the combinations marked as valid not to get lost in
the next iteration of line (9), they are saved in COMBVAL
(line (12)). In line (13), the total number of analyzed com-
binations is increased so that line (7) cycle can be complet-
ed.

In line (15) the kernel adjust ellipses function is called
usingMAX THREADS parallel processes and with the valid
combinations stored in COMBVAL, along with the base
ellipse equation base eq, all the corresponding base ellipse
equations are adjusted and the first selection criterion is
checked for each equation. The returned result is a group of
ellipse equationsmeeting the first selection criterion, and this
is saved as EQ ELLIPSES 1CS TMP.

In case of a possible second iteration of the algo-
rithm in line (7), the obtained equations are stored in
EQ ELLIPSES 1CS (line (16)).

Generally for line (7) cycle to be repeated only once,
MAX THREADS should be sufficiently larger than the total
number of combinations that comply with the base ellipse
equation.

In line (18), the equations stored in EQ ELLIPSES 1CS
are verified for compliance with the second selection cri-
terion, and those that meet this criterion are stored in
EQ ELLIPSES SEL, which will represent the final equations

to be counted and illustrated correspondingly in the TE
variable and Ieg output image.

Order of Complexity of the Parallel Method. When applying
parallelism, 𝑇(𝑛) defines the total runtime of the proposed
algorithm.

𝑇 (𝑛) = 𝑚 + 2𝑛 − 1
𝑀𝐴𝑋 𝑇𝐻𝑅𝐸𝐴𝐷𝑆. (1)

The first term given as 𝑚 represents the new total runtime
needed to analyze and adjust ellipses to each of the selected
combinations (remember that the maximum value for 𝑚
is the perimeter of the base ellipse). This time reduction
represents the main instance of parallelism applied to the
algorithm.

The second term represents the time needed to obtain
combinations that comply with the base ellipse restriction.
From 𝑇(𝑛) we can ascertain the most resource-hungry part
of the parallel method and thus determine the order of
complexity.

𝑂( 2𝑛 − 1
𝑀𝐴𝑋 𝑇𝐻𝑅𝐸𝐴𝐷𝑆) . (2)

5. Experimental Results

We implemented the algorithm using the parallel program-
ming platform CUDA-C, and, for both the preprocessing
[19] and the generation of the output image with illustrated
results, we used OpenCV 2.4 library.

For the experiments, we used a computer with the follow-
ing characteristics:

(i) Intel Xeon processor with 12 cores, each with 1.6 GHz
velocity

(ii) 32GB of RAM
(iii) NVIDIA GPUQUADROK6000 with 12GB of mem-

ory and 2880 CUDA CORES.

For the parallel algorithm a value of 218 = 262,144 was used
for theMAX THREADS constant.

For the experiments, five groups of images were used, the
first four were composed of images designed artificially to
measure the performance of the algorithm. The fifth group
was composed of real images to check the functionality of the
algorithm in real situations.

5.1. First Group of Experiments to Measure the Increase in
Performance. The objective of this first experiment was to
analyze the increase in performance of the parallel algorithm
in comparison with the best sequential version. We created
15 artificial conglomerate images with dimensions of 2000 ×
2000 pixels, each one with 3, 4, 5, 6, . . . , 17 ellipses in occlu-
sion, respectively. The total of SCPs in each conglomerate
was increased in increments of two, starting with three
SCPs in the first conglomerate. The base ellipse used for
generating the conglomerates had radii of 105 px× 140 px.The
conglomerates used are illustrated in Figure 5 (1–15).
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Table 2: Comparison of the runtimes of the parallel algorithm with the best sequential algorithm for the counting of elliptical objects in the
presence of conglomerates using images from the first group to measure the increase in performance of the parallel method.

Conglomerate Parallel algorithm time (seconds) Sequential algorithm time (seconds) Ellipses detected PSs detected
1 0.445 0.013 3 3
2 0.443 0.01 4 5
3 0.447 0.011 5 7
4 0.443 0.014 6 9
5 0.453 0.016 7 11
6 0.453 0.023 8 13
7 0.453 0.046 9 15
8 0.437 0.099 10 17
9 0.469 0.218 11 19
10 0.453 0.582 12 21
11 0.485 2.1 13 23
12 0.594 7.938 14 25
13 1.047 31.807 15 27
14 3.02 130.77 16 29
15 11.266 527.306 17 31

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 5: Images belonging to the first group of experiments.
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Figure 6: Speedup of the parallel algorithm compared with the
sequential algorithm.

The experiments consisted of applying the parallel
method and the sequential method to each conglomerate,
comparing the obtained results and calculating the increase
in speedup.

C1 C2 C3

C4 C5 C6

Figure 7: Second group of conglomerates used for the experiments.
(C1) Conglomerate with 18 ellipses, with 100 px × 50 px radii. (C2)
Conglomerate with 15 circles with 75 px radius. (C3) Conglomerate
with 15 ellipses with 122 px × 50 px radii. (C4) Conglomerate with 17
ellipses with 17 px × 115 px radii. (C5) Conglomerate with 19 circles,
with 150 px radius. (C6) Conglomerate with 15 ellipses with 185 px ×
75 px radii.

The speedup refers to how much faster an algorithm per-
forms using 𝑝 processors, compared with the same algorithm
in its best sequential version [20]. This value can be obtained
with the following formula:

𝑆𝑝 = 𝑇 (𝑛)𝑇𝑝 (𝑛) , (3)

where𝑇(𝑛) is the time taken for the best sequential algorithm
to resolve a problem of size 𝑛 and 𝑇𝑝(𝑛) is the time taken for
the parallel algorithm with 𝑝 processors to resolve the same
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Table 3: Comparison of runtimes between parallel and sequential methods to estimate themaximumperformance that the parallel algorithm
could achieve.

Conglomerate Parallel algorithm time (seconds) Sequential algorithm time (seconds) Performance
C1 5.329 258.597 48.5263652
C2 1.5 60.545 40.3633333
C3 22.126 1089.46 46.7920801
C4 10.721 524.592 46.0451154
C5 4.962 255.459 46.8604185
C6 1.14 60.831 39.3219134

CCCA CB
Figure 8: Conglomerates used to carry out comparative experiments between the proposed parallel method and the method from Bera [4].
The base circular object has a radius of 140 px. All the images had dimensions of 1400 px × 1400 px. (CA) Conglomerate with 15 circles. (CB)
Conglomerate with 14 objects. (CC) Conglomerate with 14 objects.

(a) (b)

Figure 9: Results for conglomerate CA. (a) Result of parallel algorithm on conglomerate CA. (b) Result of algorithm in [4] on conglomerate
CA.

(a) (b)

Figure 10: Results for conglomerate CB. (a) Result of the parallel algorithm for conglomerate CB. (b) Result of the algorithm in [4] for
conglomerate CB.
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(a) (b)

Figure 11: Results for conglomerate CC. (a) Result of the parallel algorithm for conglomerate CC. (b) Result of the algorithm in [4] for
conglomerate CC.
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Figure 12: Result of the parallel algorithm on R1 with a hole. (a) Experiment R1 with 4 objects. (b) Detection of 17 SCPs. (c) Result of our
parallel method: 4 objects detected in 0.597 seconds.
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(b)

Figure 13: Result of the parallel algorithm on experiment R2. (a) Image of experiment R2. (b) Detection of 18 SCPs. (c) Result of the detection
of eight objects with our parallel algorithm.
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(c)

Figure 14: Result of the parallel algorithm on experiment R3. (a) Image of experiment R3. (b) Detection of 27 SCPs. (c) Result of the detection
of 12 objects with our parallel algorithm.
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(a) (b)

(c) (d)

Figure 15: Result of the parallel algorithm on the first real image. (a) Image of the conglomerate with 4 objects. With dimensions of 929 px ×
929 px. (b) Result of parallel algorithm, 4 objects detected. (c) Binarization of the conglomerate. (d) Detection of 7 SCPs.

size 𝑛 problem [21]. Table 2 shows the results obtained from
the experiments with the first group of images.

Notice that, for the first experiments from Table 2, the
times for the parallelmethodwere approximately 0.4 seconds.
This is due to processes of initialization and data transfer to
the GPU’s memory and cannot be controlled in the imple-
mentation.

Using the formula to ascertain speedup, we plotted the
graph in Figure 6 to represent the enhancement in algorithm
performance as the number of SCPs in the conglomerate
increased, showing performance up to 40 times better. This
means that the parallel method was 40 times faster than the
sequential method.

5.2. Second Group of Experiments to Obtain an Estimate of
the Maximum Performance of the Parallel Algorithm. With
the objective estimating the maximum performance that
the parallel algorithm is capable of, six experiments were

performed on artificial images created specifically to require
considerable processing. Figure 7 shows the six conglomer-
ates used in this experiment where each one has been labelled
for simplicity (C1, C2, C3, and C4).

The execution of the experiments consisted of running
the parallel method and the sequential method on each
conglomerate from Figure 7 and then calculating the perfor-
mance achieved in each case.

Table 3 shows the times obtained for these experiments as
well as the individual performances achieved.

The shortest runtime was that of conglomerate C2, while
the longest was that of conglomerate C3. It is worth noting
that in general the times varied greatly between the six
conglomerates, a factor which should be taken into account
when analyzing performance.

With this data it is possible to estimate the maximum
performance that the parallel method can achieve. A good
valuewould be the average of the performances achievedwith
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(a) (b)

(c) (d)

Figure 16: Result of the parallel algorithm on the second real image. (a) Image of the conglomerate with 3 objects. With dimensions of 833 px
× 833 px. (b) Result of parallel algorithm, 2 objects detected. (c) Binarization of the conglomerate. (d) Detection of 4 SCPs.

images requiring high computing intensity. It follows that a
reliable estimate of speedup would be 44.6565, meaning that
the parallel method could be up to 44 times faster than the
sequential method.

5.3. Third Group of Experiments to Compare the Parallel
Method with theMethod Present in Literature for the Counting
of Elliptical Objects. In 2015, Bera [4] presented a method
for detecting circular objects in occlusion. In his method
Bera used a procedure based on finding the centroid of the
conglomerate and from there finding the local minimum
values in the outline of the conglomerate in order to plot the
arcs. Later, using geometric properties for each of the arcs,
both the radius and center of the circle passing through the
arc can be ascertained.

The following experiments make comparisons with the
method in [4] with regard to the times and results obtained.
These experiments consisted of running the parallel method
and the method in [4] on the three images of conglomerates
shown in Figure 8, which have been labelled for simplicity
(CA, CB, and CC).

The following is a description of the results obtained for
each experiment.

In Figure 9 the result obtained for conglomerate CA is
shown. The proposed parallel method detected 15 ellipses in
0.515 seconds (Figure 9(a)), while themethod proposed in [4]
detected 19 ellipses in 0.001 seconds (Figure 9(b)).The correct
result for this conglomerate should be 15 ellipses detect-
ed.

Figure 10 shows the result obtained for conglomerate CB.
The parallel method detected 14 objects in 0.766 seconds
(Figure 10(a)), while the method in [4] detected 23 objects in
0.001 seconds (Figure 10(b)). The correct result should be 14
objects detected.

In the case of conglomerate CC, Figure 11 shows the
results obtained, where the parallel method detected 14
objects in 0.719 seconds (Figure 11(a)), while the method in
[4] detected 16 objects in 0.004 seconds (Figure 11(b)).

Notably these results confirm that the parallel method is
a good option for dealing with the problem being studied.
Despite the method in [4] obtaining better times, in both
cases times were below one second, which represents a
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(a) (b)

(c) (d)

Figure 17: Result of the parallel algorithm on the third real image. (a) Image of the conglomerate with 5 objects. With dimensions of 1097 px
× 1097 px. (b) Result of parallel algorithm, 5 objects detected. (c) Binarization of the conglomerate. (d) Detection of 9 SCPs.

very short waiting time for the user. The parallel method
has the benefit of very good processing times coupled with
very good results in the detection of objects in occlu-
sion.

5.4. Fourth Group of Experiments with Images Generating
Holes When Occluding. The aim of the following experi-
ments is to analyze the performance of our algorithm when
occluded elliptical objects generate holes. We create three
artificial images (R1, R2, and R3) with these features. We
use the parallel method to reduce the execution time of our
algorithm.

The experiment in R1 (see Figure 12(a)) consists of
four elliptical occluded objects forming a hole; the size of
each one of these ellipses is 56 px × 195 px radii. Notice
that our algorithm detects the 17 SCPs (see Figure 12(b)).
Finally, we observe the result of the parallel method in
Figure 12(c), which takes 0.597 seconds in detecting the ellip-
ses.

Now, we present the results of experiment R2.This exper-
iment consists of eight ellipses of size 162 px × 194 px radii
generating a hole in the center. Our algorithm detects the 18
SCPs and the eight ellipses (see Figure 13).The execution time
of our algorithm is 0.578 seconds.

Finally, we present the results of experiment R3
(Figure 14(a)).This experiment presents 12 occluded elliptical
objects forming two holes in the conglomerate. The elliptical
objects are of size 194 px × 102 px radii. Our algorithm detects
27 SCPs (Figure 14(b)). Figure 14(c) illustrates the 12 detected
elliptical objects using the parallel method. The execution
time for experiment R3 is 1.394 seconds.

Results of experiments R1, R2, and R3 show that our algo-
rithm is precise when there exist holes generated by occluded
objects. Additionally, the execution time of our algorithm is
low even in such a case.

5.5. Fifth Group of Experiments Involving Real Images. These
experiments were conducted using real images with the aim
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(a) (b)

(c) (d)

Figure 18: Result of the parallel algorithm on the fourth real image. (a) Image of the conglomerate with 9 objects.With dimensions of 1600 px
× 1200 px. (b) Result of parallel algorithm, 9 objects detected. (c) Binarization of the conglomerate. (d) Detection of 21 SCPs.

of checking and measuring the correct functionality of the
parallel method in real situations.

To perform the experiments, six conglomerate images
were captured using a SamsungGalaxy Tab tablet with a 5MP
camera. The conglomerates were created from coins in posi-
tions of occlusion. Local binarization and edge-smoothing
processes were added in the preprocessing stage.

Next, each conglomerate with its corresponding results is
presented in Figures 15–20. In this case, for each result the
obtained binarized image is included together with the SCP
detection along the outline of the corresponding conglomer-
ate.

Figure 15 shows the image of the first conglomerate with
four coins as detected in the results obtained with the
parallel method (Figure 15(b)) in a time of 0.484 seconds.The
sequential method obtained the same result (Figure 15(b)) in
0.014 seconds.

Figure 16(a) shows the image of the second conglomerate
with 3 coins in occlusion, in this case, one coin is larger in size
and, due to the fact that the base ellipse in the experiment
was entered as similar in size to the smaller coins in the
image, the results (Figure 16(b)) revealed that only the two
smaller (similarly sized) coins had been detected. This result
was obtained with the parallel method in a time of 0.473
seconds. The sequential method obtained the same result in
0.014 seconds.

Figure 17 shows the result of the parallel algorithm when
applied to the third image of a real conglomerate (Figures
17(a) and 17(b)). This result was obtained in 0.461 seconds.
It is important to note that for the method to be successful
a satisfactory binarization is necessary in order to obtain
only the relevant information. As can be seen in Figure 17(a),
there are shadows around the conglomerate that could
cause problems when processing the data. For the sequen-
tial method the same results were obtained in 0.017 sec-
onds.

In Figure 18(a) we can see the fourth real image of a
conglomerate, this time showing 9 coins. The figure also
shows the result from the parallel method (Figure 18(b))
which successfully detected all 9 objects as expected in a
time of 0.498 seconds. The sequential method obtained the
same result (Figure 18(b)) in a time of 1.1641 seconds. For
this experiment, the parallel performance was 3.2958 times
faster.

The fifth real image is shown in Figure 19(a) and it
is comprised of 8 coins in occlusion. The result from the
algorithm (Figure 19(b)) was available in a total time of
0.563. It is important to highlight that the method detected
9 objects, although 8 was the correct number, and this can be
attributed to two factors; the first occurs because of possible
unnecessary SCP detection in the binary image (Figures
19(c) and 19(d)), and the second is due to the fact that the



Mathematical Problems in Engineering 15
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(c) (d)

Figure 19: Result of the parallel algorithm on the fifth real image. (a) Image of the conglomerate with 8 objects. With dimensions of 1162 px
× 1162 px. (b) Result of parallel algorithm, 9 objects detected. (c) Binarization of the conglomerate. (d) Detection of 19 SCPs.

parallelized ellipse-counting method only works correctly on
binary images and therefore when two or more objects in
the image are completely occluded, applying binarization will
mean that the data for the underlying object(s) is lost. The
sequential method obtained the same result (Figure 19(b))
in 1.636 seconds. For this experiment, the performance was
2.9058 times better.

The sixth and final real image was a conglomerate
(Figure 20(a)) formed by 10 coins in occlusion. Running the
parallel method on this image gave results detecting all 10
of the requested objects (Figure 20(b)) in a time of 0.975
seconds. The sequential method obtained the same result in
12.835 seconds, which gives a performance 13.16 times faster
for the parallel method over the sequential method.

6. Conclusions

In this study, we presented the parallelization of an algorithm
for the counting of elliptical objects within conglomerates
using a GPU and the CUDA-C platform. Several experiments

were conducted to ascertain the performance of the parallel
method compared with the best sequential version, at times
achieving performances up to 40 times faster. Comparison
of results was also made with an existing study in literature,
in which our experiments showed the strong performance
and results obtained by the parallel algorithm. Finally, exper-
iments were performed using real images of conglomerates
created with various occluded coin configurations.

One weakness that remains with the parallel method and
which exists outside the purview of this study is the difficulty
in dealing with conglomerates with a high percentage of
occlusion, resulting in a very high number of SCPs (up
to 100) being detected. Initially the problem seems to be
caused by the implicit difficulty of dealing with processes
that require iterations of over 2100 − 1 combinations, and for
this reason future studies will aim to identify possible ways
to omit this action or at least to reduce the processing load.
As future work, we would implement evolutionary strategies
to obtain good approximations to the ellipse adjustment.
Another option could be to divide the image into subimages
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Figure 20: Result of the parallel algorithm on the sixth real image. (a) Image of the conglomerate with 10 objects. With dimensions of 1255 px
× 1255 px. (b) Result of parallel algorithm, 10 objects detected. (c) Binarization of the conglomerate. (d) Detection of 24 SCPs.

and thus, assuming a relatively even distribution of SCPs,
reduce the total number of combination iterations required.
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