

A Methodology for Virtual Human Animation

Francisco A. Madera1, Carlos G. Herrera2 and Francisco Moo-Mena3

 1,2,3 Facultad de Matemáticas, Universidad Autónoma de Yucatán

Mérida, Yucatán 97110, México

Abstract
We propose a method to animate a 3D virtual human generating

keyframes of the model and interpolating to achieve a realistic

animation. The first two steps refer to the human modeling, the

rigging and the skinning. The third step deals with the human in

a programming environment to obtain the animation by quadratic

interpolation and consists of the parallel version to display the

human movements. The method has shown to produce real

animations of an articulated object in an easy and fast manner,

optimizing the memory usage of the GPU parallel

implementation.

Keywords: Computer Graphics, Object Modeling, Virtual

Human.

1. Introduction

There exist graphics applications such as videogames,

security programs, educational systems, that include

virtual humans which we call avatars. This requires

modeling, animation and scene adjustments to interact

with other objects. There are several tools to help:

modeling and animation packages, programming

languages, libraries, game engines, physics engines.

Our motivation lies on the creation of a method to

facilitate the avatar modeling and animation in order to

manipulate it on a programming environment to have all

the geometry features available.

Three methods are commonly utilized. The first method

employs 3D modeling packages, but it is limited to the

environment package rules and the access to the avatar’s

geometric features results complicated. The second

method consists on the use of a programming language

where different algorithms of modeling, rigging, skinning

should be implemented, so that it requires a hard work

besides the expensive computation with the matrix

operations required by the articulated motion. The third

method suggests the use of a game engine to import the

animations obtained by a modeling package, but it requires

adjustments with the affine transformations to have the

avatar placed in the scene in the correct manner.

An avatar is basically a geometric object formed by

polygons. The avatar can be modeled by a 3D modeling

package (3D package) and it can be imported by a

program of a specified Integrated Development

Environment (IDE). However, the animation of the avatar

generated by a 3D package causes problems when it is

imported by a programming language, in particular with

the translation and the rotation transformations of the

articulated motion.

To animate an avatar, we require a virtual skeleton to

guide the vertex movements. The mesh M of an avatar is

defined by a set of n polygons and m vertices M=(Δ,V),

where the set of polygons (triangles) and the set of vertices

are Δ={Δ0, Δ1, …, Δn-1} and V={v0, v1, …, vm-1}

respectively. A triangle is formed by three different

vertices labeled in anti- clock wise order Δi={vj, vk, vh}.

Fig. 1 Stages of the method proposed to animate an avatar in a 3D virtual
environment.

The contribution of this work is the methodology to obtain

an avatar animation; it starts from the modeling and

finishes with the animation in a programming language

environment (Figure 1). In Section 2 previous work is

presented, Section 3 details the avatar modeling process, in

Section 4 the animation step is described. Interpolating

mathematical foundation is shown in Section 5 and the

conclusion is presented in Section 6.

2. Previous Work

There exists a variety of object modeling techniques that

can be classified in one of the following approaches:

creative or re-constructive. The former refers to the use of

a 3D modeling package such as Maya
TM

, 3DMax
TM

,

Blender
TM

, ZBrush
TM

, GoogleSketchUp
TM

. The model can

have several features, as accurate as required; for instance,

in medical applications bones and muscles are modeled,

while in fashion applications [4] cloths are regarded. In the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 289

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

second approach, the model is captured by using

tridimensional scanner devices; even the mesh generated is

a well approximated shape of the real human, there are

some adjustments to be done.

Fig. 2. Basic human body measurements for technological design [27].

In [3], the human is scanned in specific points, defined by

the human anthropometric measures. Figure 2 shows the

24 parameters of the anthropometric measures specified by

the ISO-7250:2008 [27] norm which refers to

anthropometry and biomechanics. The skeleton creation

(rigging) implies the construction of a hierarchy of the

bones, where the root node is the parent of the skeleton

hierarchy and mostly is placed on the center of the avatar.

Thus, the vertices of the mesh can be grouped to belong to

one or more bones. Similar to the work of James and

Twigg [6], we want to build a geometric transformation

which approximates a sequence of the avatar’s meshes

with the vertices displacements. The Skeletal Blend

Skinning (SBS) method is widely utilized in videogames

due to its ease of use and its efficiency in SIMD (Single

Instruction Multiple Data) parallel implementation.

The bone’s motion can be achieved by applying

transformations with Quaternions, Matrices, spherical

coordinates among others. In the case the skeleton is

unavailable, the motion can be done with the position of

the vertices along the time. The motion Capture technique

(MoCap) [8] consists on capturing the information from

some sensors placed on a real human, who moves freely.

Some research labs upload their MoCap files in Internet,

such files contain the set of vertices in time 0, time 1, and

so on: V
0
, V

1
, … Interpolation strategies should be

employed to make the transitions from V
i
 to V

i+1
.

In this work, the skeleton and the animation are created

with two 3D packages. After that, the file meshes are

exported: mesh in time 0 (keyframe 0), mesh in time 1

(keyframe 1), etc. The files obtained are utilized in a

programming environment, so that the skeleton is not

required anymore. Lu et. al [10] introduce a deformation

that makes the transitions among meshes along the time.

Other motion strategies can be achieved using procedural

deformation [9] or interpolation [10].

In this work we propose a methodology to animate an

avatar in an easy and rapid way in order to be used in a

programming environment and then, have the geometric

features completely available. First of all, the avatar is

constructed; secondly, the skeleton is built (rigging),

vertices are assigned to the bones (skinning). Poses are

created, walk, run, swim, etc. Thirdly, in the environment

program, we employ the mesh files generated to

implement a quadratic interpolation to move the avatar. 3D

packages used are Blender
TM

 and MakeHuman
TM

;

programming tools are C++, OpenGL, GLSL, CUDA.

3. Modeling (Stage 1)

The 3D model is constructed by using photos or by using a

3D scanner. The Anthropometry, the biologic science to

measure the human body [4], is widely used to define the

parameters of the avatar. As the first option we could

create a 3D avatar using a method of digital sculpture such

as edge-loop, polygon handling, curves definition, Boolean

operators approach [12].

Fig. 3. Two avatars utilized in the MATYA videogame [1].

Definitely, these techniques require time and skills to have

an avatar model ready. We have worked in the

construction of two avatars, the mayan warrior and the

mayan princess (Fig. 3), which were used in the MATYA

videogame [1]. We employed the polygonal handling

method for modeling, the animation was constructed with

Blender
TM

 and it was imported with XNA
TM

 game engine

[21] for their adjustments in a programming environment

using C#.

The second option would be to download an avatar from

internet. For instance, the avatar illustrated in Figure 4 was

modified to be adjusted to the application.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 290

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4. The original model [19] and several modifications: traditional
dress, water effect, geometric analysis.

We use the third option: an avatar modeling package

where human model templates are ready. We employ

MakeHuman
TM

[16] which allows to create virtual humans

specifying some parameters: size, sex, weight, and some of

the anthropometric measures specified in Fig. 2. This

model is exported in OBJ format in order to be worked

with Blender
TM

. This file contains the vertices and

polygons specifications. The avatar obtained is depicted in

Figure 5.

Fig. 5. Left: the avatar created with MakeHumanTM [16], right: the avatar

skeleton is created with BlenderTM.

4. Animation (Stage 2)

The avatar skeleton is a hierarchical structure formed by

connected bones. Each union or joint specifies a

tridimensional transformation that is inherited by the

children bones in the hierarchy. A bone has a position and

an orientation (rotation). The skeleton is a hierarchy of

bones, where two bones are connected by a joint. A bone

is a matrix transformation due to it describes the

transformation of a specified point.

The avatar imported by Blender
TM

 is displayed and the

skeleton is added automatically. Many people consider

both, the avatar modeling and the skeleton construction as

a time consuming process so that we have shown an easy

way to create it. The skeleton contains 31 bones grouped

in a hierarchy whose central bone is located in the torse of

the avatar and it is labeled as Root. Root’s children are

Hips and Spine1 located in the center of the avatar. The

Hips children bones are the lower extremities : UpLeg_R

and UpLeg_L.

It is important to know the avatar motion to create its

poses. Bones are described with matrices as shown in

Figure 6. Rotations are specified in the following

expression:

x’= x cos θ + y (-sin θ), y’= x sin θ + y cos θ (1)

4.1 Rigging

The rigging consists on the construction and motion of the

skeleton. The bone includes two articulations. The i bone’s

4x4 matrix hi is placed in local coordinates, and when it is

modified to translate or rotate, the matrix transformation

(or reference matrix) Bi
-1

 is obtained in skeleton

coordinates.

Fig. 6. Left: Bone’s rotation matrix, right: bone’s articulation.

Each joint in the reference posture is associated with a

local coordinate system. In the animated posture, the joints

are transformed by rotation. The transformation from the

reference position and orientation of joint j to its position

and orientation in the animated posture can be described

by a homogeneous matrix. This matrix can be expressed as

a multiplication of successive joint transformations

Mi = hi Bi
-1

 [23].

4.2 Skinning

The skinning is the process to add the vertices to the

skeleton. A vertex can be assigned to one or more bones,

depending on the position it occupies. There is some work

about skinning such as [24], where the method proposed

used the mesh deformation to be displayed with the

ambient occlusion technique. Also, with graphics

hardware we can find the work of Kavan [25] who

introduced the skinning with dual quaternions.

The simplest deformation assign to each vertex to a joint.

That is, in vertex v’=Miv, the vertex v is transformed to its

new position v’. v is the reference vertex associated to the

joint i and v’ is the position of the deformed mesh. A

vertex which belongs to two bones will have 50% of

weight on each of them: v’=w0Miv + w1Miv, where w0=

w1=0.5. Fortunately, Blender
TM

 makes the skinning

automatically so that we could create poses moving the

skeleton and therefore the mesh.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 291

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.3 Poses

In Figure 7, three poses were created. The original mesh

(left) is defined by the vertices V
0
 = {v0

0
, v1

0
, …, vm-1

0
},

pose 1 (central) is defined by the vertices V
1
 = {v0

1
, v1

1
, …,

vm-1
1
}, pose 2 (right) is defined by the vertices V

2
 = {v0

2
,

v1
2
, …, vm-1

2
}.

Fig. 7. Three poses: (lef) original position, (central) the 4th keyframe,

(right) the 8th keyframe.

The poses V
0
,…,V

p
are exported to PLY or OFF files,

which serve in the next stage. The type of polygon (quads

or triangles) mesh is irrelevant since we are working with

the vertices. This files define the vertices by its position

X,Y,Z with float numbers, and the polygons by a set of

integer numbers indicating the vertices of such polygon.

5. Parallel Interpolation (Stage 3)

The last stage of the methodology involves the Bézier

interpolation basic concepts, the parallel

implementation and the program execution.

5.1 Bézier Interpolation

The morphing method [26] consists on converting an

object from an initial position to a target position, taking

control points to make the transition. These control points

are utilized to re-calculate the position of the vertices in

time i with a transformation.

Given a set of points, we can obtain a polynomial that

passes by the control points. Given a function f with

known values v0, v1, …, vm-1, we call the polinomial

interpolation to find pr(x) of lower degree of r that satisfies

pr(vk) = f(vk) for k=0,1,…, m-1.

To deform a vertex from mesh M
i
 to M

i+2
 we apply the

Bézier Interpolation, getting intermediate values to achieve

a smooth transition. This is a quadratic interpolation which

requires three values of the same vertex to be applied: M
i
,

M
i+1

, M
i+2

.

Bézier curves are a type of splines. A spline function is

formed by several polinomials, each one defined by an

interval, joined by a continuity constraint. Spline curves

are used to produce similar results to the polinomials,

requiring a low polynomial degree and avoiding

oscilations.

Given the points v0, …, vm-1, the m degree Bézier curve is

defined as follows: a 3-degree Bézier curve is

parametrically defined by a function q(n); when u varies

from 0 to 1, the values of q(u) are displaced along the

curve. The formula is the following:

q(u) = B0(u)p0 + B1(u)p1 + B2(u)p2 + B3(u)p3 (2)

Fig. 8. Bézier curve with 4 control points.

The n-degree Bézier curve can be generalized as follows:

 ∑(

)

(3)

5.2 Parallel Implementation

According to the interpolation algorithm analysis, we

decided to implement the parallel version without passing

by the sequential implementation version. The avatar

animation was implemented with quadratic interpolation

for Bézier curves, using OpenGL and CUDA. OpenGL

buffers called as VBO (Vertex Buffer Objects) can be

mapped as much as required in CUDA memory spaces.

The CPU-GPU data interchange is minimized by having

the data in the GPU for processing (CUDA) and rendering

(OpenGL).

Three keyframes are required to apply equation (2) and

obtain a movement as illustrated in Figure 10. VBOs are

employed to store the vertex and color of the object mesh.

A VBO is required for each keyframe, therefore 3 VBOs

are required for the Bézier Interpolation.

The actual position is calculated and updated in the

rendering loop, calling a Bézier interpolation kernel. A

kernel is a procedure executed in GPU. At the start, the

three control points are initialized to indicate the vertex

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 292

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

position in time i, i+1, i+2. Let ψ be the number of blocks,

ϑ be the number of threads, and m be the number of

vertices, then we have

 (4)

Where the value of the second {0,1} depends on the rest of

the first factor. The vertices are well distributed among the

threads to have a load balancing work (Figure 9). In this

sense, the complexity is

 .

If the time exceeds the upper bound defined to make the

animation, then only two of the three keyframes will be

updated, and this third keyframe will be the first keyframe

of the next movement.

Fig. 9. The number of threads per block is designed to contain all the
vertices of the mesh.

The algorithm of the Bézier Interpolation is explained in

Algorithm 1. The actual vertex position is computed

during the animation in its correspondent VBO.

Each thread updates a vertex; if ϑ is the number of threads

in each block factor of 32, then the ψ blocks can be

obtained as follows:

 ⌈

⌉ (5)

5.3 Program Execution

The algorithm was run in a PC desktop AMD FX 6100 X6

with 2.0 GB RAM DDR, operating system GNU/linux

X86-64 Ubuntu 12.04, kernel 3.2.029, GeForce GT 520 1

GB DDR Graphics Card.

At the start three frames are loaded: ξ0, ξ1, ξ2. The

animation speed can vary depending on the application.

We choose 2 seconds to animate an avatar with 11

keyframes. The kernel execution time is 130 μs with 68

fps (frames per second).

We proceed to execute the program with another Graphics

Card GeForce GTX 650 with 1 GB DDR5. The kernel

execution time was 30 μs with 68 fps. The time was

reduced in 100 μs, a relevant enhancement. Four

keyframes are illustrated in Figure 10.

Fig. 10. Avatar Animation.

6. Conclusion

A methodology to develop an avatar animation was

proposed, including three stages: modeling, animation, and

parallel implementation. The focus was to fill the gap of

the animation methods used in 3D modeling packages and

in the programming languages implementation. In the 3D

modeling packages, the object’s geometry can not be

easily accessed and the process becomes slow, depending

on the features of the same packages. The use of

programming languages implies a complicated task with

the matrices and quaternions operations, and it requires a

high control among the bones hierarchy.

We take the advantages of the 3D packages and the

programming languages. 3D packages facilitate the

modeling, rigging and skinning processing. Programming

languages allows an accurate operation, immediately

access to the object’s geometry, control of the animation

speed, and independency of the environment (platform and

libraries).

Interpolation algorithm was implemented in parallel using

GPUs, obtaining

 time complexity. We could vary

some parameters to control the animation speed. We run

the algorithm in one avatar, but other avatars could be

employed.

The work can be extended using other parallel

programming techniques such as the use of the texture

memory to reduce the memory access. Also, other

interpolation methods can be utilized, with more

keyframes required to have smoothy movements. Also,

other 3D packages could be used, and other programming

tools can be proved: OpenCL, and graphics APIs such as

DirectX.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 293

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Acknowledgments

We would like to thank to the Universidad Autónoma de

Yucatán and the CONACYT México for their financial

support.

References
[1] F. Madera and L. Basto and R. Uicab, “Virtual Chichen Itzá”

X Congreso Internacional de Informática y Computación.

2011, Colima, México.

[2] M. Kasap, N. Magnenat-Thalmann. "Parameterize Human

Body Model for Real-Time Applications", Proceedings of the

2007 International Conference on Cybreworlds, pp. 160 -

167, 2007.

[3] H. Seo, N. Magnenat-Thalmann. "An example-based

approach to human body manipulation", Graphical Models,

vol. 66, No. 1, 2003.

[4] H. Seo, N. Magnenat-Thalmann "An automatic modeling

human bodies from sizing parameters", Proceedings of the

2003 Symposium on Interactive Gaphics I3D’03. Monterey,

California.

[5] T. Pejsa, I.S. Pandzic. “State of the art in example-based

motion synthesis for virtual characters in interactive

applications”. Computer Graphics Forum, vol. 29, No. 1, pp.

202-226, 2010.

[6] Doug L. James and Christoper D. Twigg. “Skinning mesh

animations”. ACM Transactions on Graphics, vol. 24, N. 3,

2005.

[7] L. Kavan, J. Zára. “Spherical blend skinning: a real-time

deformation of articulated models”. Proceedings of the 2005

symposium on Interactive 3D graphics and games,

Washington, District of Columbia, 2005.

[8] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, J.

Davis. “SCAPE: shape completion and animation of people”.

ACM Trans. Graph. vol. 24, No. 3, pp.408-416, 2005.

[9] H. Mitake, K. Asano, T. Aoki, S. Marc, M. Sato, S.

Hasegawa. “Physics-driven Multi Dimensional Keyframe

Animation for Artist-directable Interactive Character”.

Computer Graphics Forum, vol. 28, No. 2, 2009.

[10] D. Lu, X. Ye, G. Zhou. “Animating by example”. Computer

Animation and Virtual Worlds, vol. 18, No. 4-5, pp. 247-257,

2007.

[11] Revista Dibujarte, No. 23, 1998. México. https://es-

es.facebook.com/RevistaDibujarte

[12] Kelly L. Murdock and Eric M. Allen. “Edgeloop Character

Modeling”. Wiley, 2006.

[13] P. Schneider and David Eberly. “Geometric Tools for

Computer Graphics”, Morgan Kaufmann, 2003.

[14] Edward Angel. “Interactive Computer Graphics, a top down

approach using openGL”. Addison Wesley, 2008.

[15] G. Maestri, “Digital Character Animation 3”, First Edition,

New Riders Publishers (2006).

[16] Make Human: An Open Source tool for making 3D

characters. http://www.makehuman.org/, 2013.

[17] Blender: An Open Source tool for Modeling and Animation.

http://www.blender.org/, 2013.

[18] A Manga Girl 3D Model.

 http://blenderartists.org/forum/showthread.php?95491-Maid

San-(Manga-style-girl-in-a-maid-costume), 2013.

[19] A Blender Girl 3D Model.

http://www.blender-models.com/model-

downloads/humans/id/low-polyfemale-model/, 2013.

[20] COLLADA: Digital Asset and FX Exchange Schema.

http://collada.org, 2013.

[21] XNA Tutorial. http://www.xna-tutorial.com/, 2013

[22] Bones in Blender.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/A

rmatures/Bones, 2013.

[23] K. Erleben, J. Sporring, K. Henrikisen, H. Dohlmann.

“Physics-Based Animation”. Charles River Media Publisher,

2005.

[24] Adam G. Kirk, Okan Airkan. “Real-Time Ambient

Occlusion for Dynamic Character Skins”. Proceedings of the

2007 symposium on Interactive 3D Graphics and games.

Seattle, Washington, pp 47 -52, 2007.

[25] Ladislav Kavan, Steven Collins, Jiri Zara, Carol O'Sullivan.

“Geometric Skinning with Approximate Dual Quaternion

Blending”. ACM Transactions on Graphics, vol. 27. No. 4,

pp. 1-23, 2008.

[26] Won-sook Lee, Nadia Magnenat-Thalmann. “Virtual Body

Morphing”. Proceedings of the Fourteenth Conference on

Computer Animation. pp 158 - 166, Seoul, 2001.

[27] ISO 7250-1:2008. “Basic human body measurements for

technological design, part I: Body measurement definitions

and landmarks”.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_de

tail.htm?csnumber=44152

Francisco A. Madera received his B. Sc. Degree from the
Universidad Autónoma de Yucatán, México; his PhD from the
University of East Anglia, UK. He is the Computer Science
postgraduate Chairman at the University of Yucatán. Dr. Madera
teaches subjects related to computer graphics and videogames
development; and his research is focused on collision detection
and GPU programming.

Francisco Moo-Mena is a Professor in Computer Sciences at
Universidad Autónoma de Yucatán, in Mérida, Mexico. From the
Institute National Polytéchnique de Toulouse, in France, he
received a Master Degree in Computer Science and a PhD, in
2003 and 2007, respectively. He also received another Master
Degree in Distributed Systems from the Instituto Tecnológico y de
Estudios Superiores de Monterrey, Mexico, in 1997. He received a
BS in Computer Systems Engineering from the Instituto
Tecnológico de Mérida, Mexico, in 1995. His research interests
include Parallel and Distributed Computing, CUDA, Self-healing
systems, and Web services Architectures.

Carlos G. Herrera is studying a master degree in Computer
Sciences at the Universidad Autónoma de Yucatán. His research
interest focuses on Graphics and GPU Programming.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 294

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

https://es-es.facebook.com/RevistaDibujarte
https://es-es.facebook.com/RevistaDibujarte
http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures/Bones
http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging/Armatures/Bones
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44152
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44152

