
International Association of Scientific Innovation and Research (IASIR)
(An Association Unifying the Sciences, Engineering, and Applied Research)

 International Journal of Emerging Technologies in Computational

and Applied Sciences (IJETCAS)

www.iasir.net

IJETCAS 15-690; © 2015, IJETCAS All Rights Reserved Page 131

ISSN (Print): 2279-0047

ISSN (Online): 2279-0055

Determine routes using an algorithm search with information in a

simulated environment using Player / Stage and robot Pioneer
Michel Garcia1, Cinhtia González2, Sergio González3

Autonomous University of Yucatan Multidisciplinary Unit Tizimin.

Calle 48 Num. 207 x 31. CP 97700 Tizimín, Mexico

Abstract: In this paper it implements a depth-first search algorithm performed in the C ++ programming

language implemented on the Player / Stage, that allows the use of a robot Pioneer in a simulated environment.

The program developed solves a maze that was represented as a binary tree; the results show a solution to the

maze with path previously found, the robot travels the map from an initial state, and using its sensors to detect

obstacles, the robot take a decision based on the information obtained with his sensors to solve map, same that

allows you to reach a destination point.

Keywords: Player/Stage; Robot Pionner; Simulated Environment; Depth Search; Maze Search

I. Introduction

Thanks to technological advances in recent years, today it is possible to build machines with several sensorial

devices, with communication facilities, (in short, medium or long distance), and capable of perform different

actions in different cases without need to an individual who controls or takes a decision, these machines use

information to decide what action should be performed in each case, allowing to have autonomous robots. The

decisions able to take these robots depend mainly on the data obtained from different sensors. Unfortunately, the

development or acquisition of an autonomous robot can be expensive, but thanks to the current progress is

possible deployments simulated environments like the Player / Stage [1], which is a free platform that provides a

set of libraries that allows the programming and simulation of the behaviour of a robot in different types of

environments, enabling to use all its sensors and / or actuators [2]. Following these advantages tools for

simulation and robot programming, this project emerges in which an autonomous robot Pioneer 2-DX type is

simulated [1], with the ability to solve the problem of finding a route between points in a maze, considering any

of them as a starting point and another endpoint. To achieve this, it requires the use of sensors, actuators and a

search algorithm. In this project will use the depth-first search algorithm. There are studies that use this tool using

sensors and actuators to explore real-life terrain with multi-robots, these contain algorithms to perform

successfully in the exploration of maps [2]. In [3] the problem of persecution-evasion consisting the realization of

track addresses, that is where a robot chasing another; this problem is solved by using a modeling Markov

decision processes. In [4] is stated that given a queue of delivery tasks prioritized objects, it is desired to find a

sequence of actions for a mobile robot to perform these tasks efficiently, in that work a learning algorithm called

Smoothed Sarsa is proposed.

II. Problem

The navigation of mobile robots is one of the major problems of artificial intelligence, it sets how a robot moves

in a given environment, such navigation implies that the robot has the ability to interpret the sensor data and plan

an path to a goal, the problem is defined as navigation. Given a starting point "A" reach the destination point "B"

(B1, B2 ...) using the knowledge and the sensory information received from the robot [5]. The problem of

navigation involves solving several problems, among these is the perception of the robot, that is must be able to

interpret the sensor data to obtain useful information that will help determine its position in the environment in

which it is located. Another problem is that planning must contain the robot, this means having the ability to

decide how to respond to obstacles or crossroads and thus achieve the objective; likewise must have good control

of their movement actuators to achieve the desired trajectory [5]. Such is the importance of navigation algorithms

have been developed to increase the accuracy of the data collected by the sensors, so that the robot may know his

current position with high precision. Because the amount of data to handle these systems, the programming must

be as simple and efficient, the programming refers to the implementation that must have the robot in a

programming language, defining the actions to be performed [6]. In [7], navigation maps are used to implement

the simulation of several autonomous robots in a search and rescue operations, these robots store information

from his sensors in the simulator and it keeps track of the actions of the robots for assess their performance, this

implementation navigation and search missions dangerous rescue could provide benefits to humanity. For the

problem of navigation in [8], route planning map dividing between robots is proposed, considering their travel

times to minimize the time of complete navigation environment; all this is done by an algorithm that is designed

to handle route planning and partition map simultaneously.

http://www.iasir.com/

Michel Garcia et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 14(2), September-November,

2015, pp. 131-135

IJETCAS 15-690; © 2015, IJETCAS All Rights Reserved Page 132

III. Requirements and tools for using the Pioneer robot

Player / Stage, is a free and freely distributable tool began as a project at the USC Robotics Research Lab in 1999

because of the need for an interface and a simulator for Multi-Robot Systems (MRS) [1]. This tool runs on

UNIX-based platforms, for this project was implemented on the Linux distribution Ubuntu 11.10.

Player / Stage is a service layer and a simulator, offering facilities, transparency and speed for programming,

control and simulation of robots like the Pioneer 2-DX, allowing the complexity involved in a transparent process

to the developer. It is a service layer which allows to control the different components that contains a robot

through its development interfaces, making it accessible the programming of a robot. It also contains drivers that

simplify programming of the robot through its interfaces, allowing the implementation and configuration of

various devices and sensors of the robot. The control programs communicates with Player through TCP sockets,

reading data from the sensors, writing commands in the actuators, and configuring devices at the time.

For this project the ultrasonic sensor was used for its higher reliability to detect obstacles, also available in the

simulation. Among the advantages of the ultrasonic sensor is the scope and quality of detection, which facilitates

locating other available paths. The robot 16 has ultrasonic sensors distributed around the robot, in Figure 1 the

distribution of sensor is appreciated.

Figure 1 Ultrasonic sensor in the Pioneer robot

An important point in the programming of robots is being able to simulate the behavior, and this is where Stage

does the work, through a graphical interface that simulates the real world through the use of an image that works

like a map of the robot environment [6]; Stage has the ability to simulate various types of hardware and can

simulate from one to hundreds of robots simultaneously on the same PC, including its sensors and devices. For

the current project is simulated to a Pioneer 2-DX type robot. Among the advantages of the Stage, is the

execution of algorithms reliability very close to reality [1].

IV. Implementation

To find the route from the start point to the end point, without the need to explore the surroundings, it was
necessary to transform the environment map to a binary tree; to perform such activity, was defined a starting
point in order to find the corresponding paths turning them into leaves of the tree, eventually all roads were
referenced with values in order to generate the complete binary tree of the environment, it is noteworthy that the
desired goal by the robot is specified in the generated tree. As seen in Figure 2 Naming and values to the map is
observed.

Figure 2 Conversion of a map to a binary tree.

Michel Garcia et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 14(2), September-November,

2015, pp. 131-135

IJETCAS 15-690; © 2015, IJETCAS All Rights Reserved Page 133

To find routes in a binary tree was necessary an algorithm that search each of its leaves to reach a solution, in this
case the depth-first search algorithm was used. In the implementation was necessary to integrate the binary tree
map coded in the C ++ language, values and names were assigned to the paths, facilitating the insertion of data
into the program. In the code 1, shows the insertion of the nodes in the program. The functionality of this code is
to accommodate the nodes by assigning a name and a value that allows creating a binary tree.

Code 1: node insertion
case 0: insertar(arbol, 1000,'X');
case 1: insertar(arbol, 950,'Z');
case 2: insertar(arbol, 900,'A');

Once entered the names and values of all nodes required by the map, it was required to structure nodes in order to
complete the tree. The function shown in Code 2 was implemented which allows lower nodes go to the left and
higher nodes go to the right, resulting in the complete tree.

Code 2: Generation of the tree

void insertar(ABB &arbol, int x,char i){

 if(arbol==NULL){

 arbol = crearNodo(x,i);

 }

 else if(x < arbol->nro)

 insertar(arbol->izq, x,i);

 else if(x > arbol->nro)

 insertar(arbol->der, x,i);

}

Once structured the nodes on the tree, was necessary to implement the algorithm to find the path to the target or
goal, this algorithm is known as depth-first search, which part of your coding is shown in code 3.

Code 3: Depth Search Algorithm

void enOrden(ABB arbol){

 if(arbol!=NULL){

 if(arbol->Inf=='M'&&bandera!=1){

 bandera=1;

 camino2[tam]=arbol->Inf;}

 if(bandera!=1){

 camino2[tam]=arbol->Inf;

 tam++;

 }

enOrden(arbol->izq);

enOrden(arbol->der);

tam--;}

}

The algorithm allows to visit all the nodes visiting each of recursively that is, not all children nodes will be visited
consecutively, they will travel in depth until to reach a end node or leaf node, if there are no more nodes to visit,
will do a backtracking, the process is repeated with each of the brothers and the processing nodes. In the figure 3
the operation is shown. Upon completion, the algorithm throws us the path to the goal.

Figure 3 Depth Search pseudocode

Michel Garcia et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 14(2), September-November,

2015, pp. 131-135

IJETCAS 15-690; © 2015, IJETCAS All Rights Reserved Page 134

Subsequent to implement the algorithm. The programming of the sensory part of the robot was necessary, the
sensor has 16 positions to use for which it was decided to use 8 of them, of which a vision of the left side was
obtained, forward and right side beginning from position 0 to position 7, Figure 1 shows the configuration of the
position of each of the sensors.
The operation of the entire program consists of a combination of programming the depth search algorithm and
programming the ultrasonic sensor.
Once the algorithm finds the path, the robot starts in an initial state, subsequently continues to advance until the
sensor detects several paths or obstacles in the map, then the program asks the next option that showed the depth
search algorithm, this process is carried out until the robot reaches its final state.
Tests were performed on simulated environment using a maze map as shown in Figure 2, this map assigned
names for each path, as shown in Figure 4.

Figure 4 Naming paths

Once designed the map with names, values are placed to make a binary tree, considering that the initial state is the
"X" and the final state is "M".
According to the algorithm explained above, running the algorithm will find the following path:
X, Z, A, G, I, J, M, this is the route that runs through the robot in the simulator.

V. Test and Results

To run the program first the .cc file was compiled with the sentence: g ++ -o outfile `pkg-config --cflags playerc
ArchivoFuente.cc ++` `pkg-config` --libs playerc ++, followed by the load of the map image with the sentence:
player CodigoMapa.cfg.
The application was executed approximately 40 times of which about 32 of those occasions reached the goal.
When the system did not succeed was due to the characteristics of the simulator, because when you run some
other concurrent application Player was not provided very accurate readings of the sensors and the execution of
the angle of rotation necessary for the proper execution of the route found was incorrect.
When the robot reaches the goal it did so almost reflective, ie the trajectories described by the robot were almost
identical.
During testing the application was submitted to various experiments, among the most important change is the
goal. The program succeeded in all cases meet the goal, with the obvious difference of the time it took for to
obtain the route from the starting point to the goal.

VI. Conclusions

The use of depth-first search algorithm is useful in event that has all the map information. This means that the
map can be loaded as a tree that can be solved with depth-first search technique. The application developed solves
the map to find the route to follow, it then runs the actions towards the goal, so that the robot does not need to
have stored in its memory all the map information. This ensures efficiency in the time when the robot reaches its
goal, because the resolution of the map is not solved by the robot and this one just follows a number of specific
instructions.
One of the problems facing this implementation is the conversion of a binary tree map. This also creates a
problem since adaptation of the a binary tree map is necessary to identify the target with the letter "M".
The results showed that the robot reaches the goal in 95% of the time. But the application generated a 100%
effectiveness when determining the route to the goal, the occasions when the robot do not reaches the goal is due
to problems of the simulator.
One of the future work will be to implement another algorithm using heuristics for finding routes, same that
allows finding optimal routes, another future work could parallelized the process, and that with greater processing
capacity would be developed an implementation for non-binary trees.

Michel Garcia et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 14(2), September-November,

2015, pp. 131-135

IJETCAS 15-690; © 2015, IJETCAS All Rights Reserved Page 135

VII. References

[1] P. Gerkey Brian, T. Vaughan Richard, Andrew Howard, “The Player/Stage project: Tools for Multi-Robot and Distributed Sensor

Systems”.

[2] K.S. Senthilkumar, K. K. Bharadwaj, “Player/Stage Based Simulator for simultaneous multi-robot exploration and terrain coverage

problem”, Vol. 2, Octubre 2011.

[3] Michel Garcia G., Cinthia González S., Eduardo Morales M., Enrique Sucar S., “Modelado y solución del problema de persecución -

evasión en robots móviles utilizando Iteración de valor”, Octubre 2007.

[4] Deepak Ramachandran, Rakesh Gupta, “Smoothed Sarsa: Reinforcement Learning for Robot Delivery Tasks”, Japón, 2009.

[5] Alberto Ortiz, “Navegación para Robots Móviles”, Departamento de Matemáticas e Informática.

[6] Tomas Rebollo Balaguer, “Diseño e implementación de una capa de software para el control de robots mediante Player/Stage”, 2010.

[7] Robert L. Dollarhide, Arvin Agah, “Modeling and simulation of autonomous robot search teams”, 2002, Vol. 42, pp. 1739-1761.

[8] Muzaffer Kapanoglu, Mete Alikalfa, et al., “A pattern-based genetic algorithm for multi-robot coverage path planning minimizing

completion time”, May 2010.

Rich Y Knight K., “Inteligencia Artificial”, 1994, McGraw Hill, Segunda Edición.

VIII. Acknowledgments

We thank the Autonomous University of Yucatán and the Faculty of Mathematics from all facilities in the accomplishment of this work.

