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1. Introduction

Consider a rational function field of one variable F over its field of constants Fq, 
where Fq is a finite field of q = pn elements, p a prime number, n ≥ 1. Once we choose a 
generator x of F over Fq, it is customary to call those places of F coming from irreducible 
primes of A = Fq[x] the finite places, and the unique remaining place is called the infinite 
place and is denoted by p∞ or p1/x because it has uniformizer 1/x.

Artin [1] considered the analogy Z, Q and R ↔ A = Fp[x], F = Fp(x), F∞ =
Fp((1/x)), p an odd prime, and called a quadratic extension K of F real if K ⊂ F∞, i.e., 
there are two places of K over p∞ (i.e., p∞ splits completely) and imaginary if there is 
only one place P∞ above p∞. MacRae [6] calls K imaginary if further p∞ ramifies in K. 
In this article, we follow Artin’s definition.

If K is not a geometric quadratic extension of Fq(x), then K is Fq2(x), which is 
understood, so we restrict to geometric imaginary quadratic extensions only.

We can consider the divisor class group C0(K) of divisors of degree 0 of K or the 
ideal class group C(OK) of the integral closure OK of Fq[x] in K. We know these are 
finite and |C(OK)| = (degP∞) |C0(K)|. Thus, when we consider ideal class groups of 
exponent �, � an odd prime, we automatically reduce to the ramified case.

Often, e.g. in Drinfeld’s theory, any chosen place is called the infinite place and others 
are called finite places, but we stick to this classical terminology, which practically means 
that any place of degree one can be chosen to be the infinite place, given just the abstract 
rational function field. Hence K is called [8] a totally imaginary extension of F if no place 
of degree one in F splits in K.

To classify relative extensions K/F , one uses isomorphisms keeping F (and hence Fq) 
constant, but to shorten the list or to use abstract K’s one often uses the notion of 
isomorphism instead. Here, we classify function fields up to isomorphism.

2. Norms of integral elements in imaginary extensions

Let K be an imaginary extension of Fq(x) with genus g. There is only one place P∞
which lies over the infinity place p∞ of Fq(x). The following theorem, provides a bound 
on the degree of the norm of integral elements.

Theorem 2.1. [8, Theorem 4, p. 220] If K is an imaginary quadratic extension of Fq(x), 
then, for any α ∈ K \ Fq[x], which is integral over Fq[x],

degN(α) ≥ 2g + 1,

where N is the norm of α.

Corollary 2.2. If K is an imaginary quadratic extension of Fq(x) for which the divisor 
class group has exponent e, then, for any finite place p of Fq(x) which splits in K,
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deg
Fq(x) p >

2g
ed∞

where g is the genus of K and d∞ = degP∞ is the degree of the place of K over the 
infinite place p∞ of Fq(x).

Proof. Let p(x) be the irreducible polynomial of Fq[x] associated with the divisor p, and 
let P be any place of K which lies over p. Thus,

Pd∞/Pdeg p
∞ ∈ C0(K).

Now, since the exponent of the divisor class group is e,

(
Pd∞/Pdeg P

∞
)e = (α) , α ∈ K.

Taking norms of both sides gives

(
pd∞/pd∞ deg p

∞
)e = (N(α)) .

But then,

N(α) = a · p(x)ed∞

for some a ∈ Fq. By Theorem 2.1,

ed∞ deg p(x) ≥ 2g + 1.

Thus

deg p >
2g
ed∞

. �
Theorem 2.3. Let K be a quadratic extension of F for which the divisor class group has 
exponent e, then K is a totally imaginary extension of F if K has genus greater than or 
equal to e.

Proof. By hypothesis, K is a quadratic extension of F for which the divisor class group 
has exponent e. Suppose there is a place of degree 1 in F which splits in K; let it be the 
infinite place of F . Then, if Q1 and Q2 are two places of K which lie over the infinite 
place of F ,

Q1/Q2 ∈ C0(K).

Since the divisor class group has exponent e, it follows that
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Qe
1/Q

e
2 = (α).

Hence, vQ2(α) = −e. If the characteristic is odd, by [7, Theorem 4] we have

e ≥ 1 + g > g

and if the characteristic is 2, from [7, Theorem 10] follows that

e ≥ g + 1
2 > g.

Thus, if a place of degree 1 splits in such a K, K has genus less than e. �
Theorem 2.4. Let K be a quadratic extension of F then, for a proper choice of the gen-
erator x of F over Fq, K is an imaginary extension of Fq(x) if q > 2g2 +2g

√
g2 − 1−1.

Proof. Suppose that all the places of degree 1 in F split in K. Then K has 2q+ 2 places 
of degree one. However, by the Riemann hypothesis for function fields,

|(2q + 2) − (q + 1)| ≤ 2gq1/2

|q + 1| ≤ 2gq1/2.

Hence,

q + 1 − 2gq1/2 ≤ 0.

Now, let y = √
q. Then y2−2gy+1 ≤ 0, and the roots of this equation are y = g±

√
g2 − 1. 

So q = 2g2 ± 2g
√
g2 − 1 − 1. But, if q > 2g2 + 2g

√
g2 − 1 − 1, then q + 1 − 2gq1/2 > 0, 

a contradiction. Therefore, some place of degree one in F must not split in K. �
From algebraic geometry [10], it is known that the �-rank of the divisor class group of 

an algebraic function field over an algebraically closed field of constants is 2g if � is not 
the characteristic, and it is at most g when � is the characteristic. Thus, in a function 
field over a finite field the �-rank of the divisor class group is at most 2g when � is not 
the characteristic and at most g when � is the characteristic.

Theorem 2.5. If K/Fq is an algebraic function field over the finite field Fq, q = pn, in 
which the divisor class group has exponent �, with � prime, then,

⎧⎪⎪⎨
⎪⎪⎩
q = � if p = � and � > 2
q = 2 or 4 if p = � and � = 2
q ≤ (� + 1)2 if p �= �.



V. Bautista-Ancona et al. / Journal of Number Theory 173 (2017) 243–253 247
Proof. If p �= �, then for hK = |C0(K)|, the class number of K,

hK ≤ �2g

since C0(K) is at most the product of 2g copies of Z/�Z. However, by the Riemann 
hypothesis for function fields,

(q 1
2 − 1)2g ≤ hK ≤ �2g. (1)

This implies log�(
√
q − 1) ≤ 1, so

q ≤ (� + 1)2.

If p = �, then

(q 1
2 − 1)2g ≤ hK ≤ �g

or, equivalently

q ≤ (
√
� + 1)2. (2)

But, since q = pn for some positive integer n, we have from (2) that

pn ≤ (√p + 1)2.

Now, (√p+1)2 < p2 if p > 2, so in this case n = 1 and q = p. When p = 2, (
√

2+1)2 < 23

and therefore q = 2 or q = 4. �
This theorem says that there is only a finite number of q’s. Next, we show that for 

each order there is only a finite number of possible K, by bounding the genus of such 
fields.

If K is such that not all the places of degree 1 of Fq(x) are inert in K and such 
that the genus g ≥ e, then, by Theorem 2.3, some place of degree 1 must ramify. Thus 
it can be assumed that the field K is imaginary and that the infinite place of Fq(x)
ramifies in K. In this case, Corollary 2.2 says that no place of degree 2

eg or less can split 
in K.

On the other hand, Theorem 6 from [7] says that for a fixed q, if m is a positive integer 
such that

qm − 2gqm
2 − 2m(g + 2) ≥ 0

then there exists a place in Fq(x) which splits completely in K and which has degree less 
than m0, where m0 = m + 2. Now, if we take m =

⌊ 2g
e

⌋
− 1, where 	r
 denotes the floor 

of the rational number r, we have
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m + 1 =
⌊

2g
e

⌋
≤ 2

e
g.

Moreover, if g ≥ e then m > 0. This implies

Theorem 2.6. Let K be a quadratic extension of Fq(x) of genus g, in which not all the 
places of degree 1 in Fq(x) are inert. If the divisor class group of K has exponent e, and

qm − 2gqm
2 − 2m(g + 2) ≥ 0 (3)

where m =
⌊2g

e

⌋
−1, then exists a place in Fq(x) which splits completely in K and which 

has degree less or equal than 2
eg whenever g ≥ e.

3. Characterization of quadratic extensions of prime exponent

Theorem 3.1. Let K be a quadratic extension of Fq(x), in which the infinite place rami-
fies, and let h = |C(OK)| be its class number. Let t be the number of places of Fq(x) that 
ramify in K. Then h = hK and

(a) The group of divisor classes of degree zero has exponent 2 if and only if h = 2t−2 or 
h = 2t−1, depending on whether q ≡ 1 mod 2 or not.

(b) If the group of divisor classes of degree zero has exponent an odd prime number, then 
t = 2 or 1, depending on whether q ≡ 1 mod 2 or not.

Proof. The first claim follows from h = d∞ ·hK since in this case, when the infinite place 
ramifies, d∞ = 1. For (a) see Theorem 2 in [2]. The part (b) follows from Theorem 9
in [12]. �

The converse of the Theorem 3.1(b) is not true, as shown in the following examples:

Example 3.2.

(a) Let q = 3. Then the function field F3(x, y), where y2 + 2x5 + 2x3 + 2x2 + 1 = 0, is 
a quadratic extension of F3(x) of genus 2, where two places of F3(x) ramify, but its 
exponent is 9, not a prime.

(b) Now, let q = 2. Then the function field F2(x, y), where y2+y+x13+x7+x6+x3+1 =
0, is a quadratic extension of F2(x) of genus 6, where one place of F2(x) ramifies, 
but its exponent is 49, not a prime.

4. Exponent three

Observe that Theorems 2.5 and 2.6 give an algorithm to find bounds on q and, in 
each case, bounds for the genus of K. Next, we apply this to the particular case when 
the exponent equals three.
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Theorem 4.1. If K is an algebraic function field over the finite field Fq in which the 
divisor class group has exponent 3, then

q ∈ {2, 3, 4, 5, 7, 8, 11, 13, 16} .

Proof. From Theorem 2.5, we immediately have q = 3 if p = 3 and q ≤ 16 other-
wise. �

Now, we have

Theorem 4.2. If K is a quadratic imaginary extension of Fq(x) of genus g, in which 
the infinite place of Fq(x) ramifies, and if the ideal class group of K has exponent 3, 
then:

(1) q = 16, 1 ≤ g ≤ 2
(2) q = 13, 1 ≤ g ≤ 2
(3) q = 7, 1 ≤ g ≤ 4
(4) q = 5, 1 ≤ g ≤ 7
(5) q = 4, 1 ≤ g ≤ 8
(6) q = 3, 1 ≤ g ≤ 11
(7) q = 2, 1 ≤ g ≤ 19.

Proof. Firstly, we prove the theorem for q = 16. In this case, by Equation (1), hK = 32g. 
Let L(t) = 1 + a1t + · · · + a2gt

2g ∈ Z[t] be the L-polynomial of K. This polynomial 
factors in C[t] in the form

L(t) =
2g∏
j=1

(1 − αjt).

Now, by the Hasse–Weil theorem, the reciprocals of the roots of L(t) satisfy

|αj | = q1/2 = 4, j = 1, 2, . . . , 2g,

and so

αj = 4eiθj , j = 1, 2, . . . , 2g.

Since L(1) = hK =
∏2g

j=1(1 − 4eiθj ), arranging by conjugate pairs, we get that

9g =
g∏

(17 − 8 cos(θj)). (4)

j=1
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But 17 − 8 cos(θj) ≥ 9 and therefore, by (4), 17 − 8 cos(θj) = 9, i.e., cos(θj) = 1, j =
1, 2, . . . , 2g. This shows that αj = 4, j = 1, 2, . . . , 2g and L(t) = (1 −4t)2g = 1 −8gt + · · · . 
Since N1, the number of places of degree one of K, is N1 = a1 + q + 1 = −8g + 17 ≥ 0, 
it follows that g ≤ 2.

Now, we consider the case q = 13. Since the Equation (3) holds for g ≥ 5, Theorem 2.6
guarantees the existence of a place p in Fq(x) of degree ≤ 2g/3 which splits in K. On 
the other hand, Corollary 2.2 establishes that p must have degree > 2g/3 which is a 
contradiction. Therefore, if K has exponent 3, then 1 ≤ g ≤ 19.

The same argument shows that if q = 2, 3, 4, 5, 7, then the genus is less than or equal 
to 19, 11, 8, 7, 5, respectively.

Next, assume K is an imaginary quadratic extension of F13(x) of genus g = 3. 
Then, K = F13(x, y) with y2 = f(x), where f(x) is an irreducible polynomial of 
degree 7 over F13. By Theorem 3.1, f(x) and the infinite place are the only places 
that ramify in K. According to Corollary 2.2, the finite places in F13(x) of degree 1 
and 2 are inert in K. So, K has exactly one rational place and 13 places of de-
gree 2. Since Nr, the number of places of degree one in the constant field extension 
KF13r , is 

∑
d|r d · Nr where Nr is the number of places of degree r in K, it follows 

that N2 = 27. But by the Hasse–Weil bound for KF132 , N2 satisfies the inequality ∣∣N2 − (132 + 1)
∣∣ ≤ 2 ·13g, which gives a contradiction. A very similar argument excludes 

the case g = 4.
For the values of q = 8, 11, mentioned in Theorem 4.1, there are no quadratic func-

tion fields at all with class group of exponent 3. This follows because, according to [5, 
Theorem 3.2], if 3 divides q + 1, the 3-rank of the class group doubles when going from
K to the quadratic constant field extension L = KFq2 . Since the genus g of K and L
is the same, and for L the 3-rank is bounded by 2g, the 3-rank for K is bounded by g. 
So from the inequality (√q − 1)2g ≤ 3g, which is not valid for q = 8, 11, the claim is 
proved.

Next, assume q = 7 and g = 5. Then, from Table 3 of [13], the 3-rank is bounded by 4. 
Therefore, a class group of exponent 3 for q = 7, g = 5 would lead to the contradiction 
(
√

7 − 1)10 ≤ 34. �
Among all the possibilities given in Theorem 4.2, we completely examine, using the 

computer algebra package Magma [4] and the mathematics software system SageMath 
[14], the following cases:

q genus
2 1 ≤ g ≤ 6
3 1 ≤ g ≤ 4
4 1 ≤ g ≤ 2
5 1 ≤ g ≤ 4
7 1 ≤ g ≤ 3
13 1 ≤ g ≤ 2
16 1 ≤ g ≤ 2
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Next, we list the extensions found with exponent three, up to isomorphism.

q g h Extension
2 1 3 y2 + y + x3 = 0

2 3 y2 + y + x5 + x + 1 = 0
3 3 y2 + y + x7 + x3 + 1 = 0

4, 5, 6 Computer search shows that there are no such extensions
3 1 3 y2 + 2x3 + 2x2 + 1 = 0

2 3 y2 + 2x5 + 2x3 + 2x + 1 = 0
3, 4 Computer search shows that there are no such extensions

4 1 3 y2 + y + wx3 = 0, where w2 + w + 1 = 0
1 9 y2 + y + x3 = 0
2 9 y2 + y + wx5 + x3 + w2x + w = 0, where w2 + w + 1 = 0

5 1 3 y2 + 4x3 + x + 3 = 0
2, 3, 4 Computer search shows that there are no such extensions

7 1 3 y2 + 6x3 + 3 = 0
1 9 y2 + 6x3 + 5 = 0

2, 3 Computer search shows that there are no such extensions
13 1 9 y2 + 12x3 + 10 = 0

2 Computer search shows that there are no such extensions
16 1 9 y2 + y + w3x3 = 0, where w4 + w + 1 = 0

2 81 y2 + y + w5x5 + w3 = 0, where w4 + w + 1 = 0

Remark 4.3. By Theorem 4.2, it follows that the examples listed in the above table are 
the only ones for q > 7.

Theorem 4.4. Up to isomorphism, there are precisely eight imaginary quadratic function 
fields of class number three, in which the infinite place ramifies. The complete list is given 
in the following table

Imaginary quadratic function fields with class number 3. 
q g Extension
2 1 y2 + y + x3 = 0

2 y2 + y + x5 + x + 1 = 0
3 y2 + y + x7 + x3 + 1 = 0

3 1 y2 + 2x3 + 2x2 + 1 = 0
2 y2 + 2x5 + 2x3 + 2x + 1 = 0

4 1 y2 + y + wx3 = 0, where w2 + w + 1 = 0
5 1 y2 + 4x3 + x + 3 = 0
7 1 y2 + 6x3 + 3 = 0

Proof. According to [11] and [3], there are thirteen quadratic function fields with class 
number three, up to isomorphism. It is easily checked that, up to isomorphism, there are 
exactly eight imaginary quadratic function fields of exponent three in which the infinite 
place ramifies. The above table shows a list of representatives of the distinct isomorphism 
classes. �
Remark 4.5 ([11, Theorem 3.2, p. 641]). Up to Fq-isomorphism, there is an extra imag-
inary quadratic function field with class number 3 and g = 1 and is given by F4(x, y)
where y2 + y + w2x3 = 0 and w2 + w + 1 = 0.
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5. Exponent two

We take this opportunity to thank Andreas Schweizer for having pointed out the 
incompleteness of the list we had given about the quadratic function fields whose ideal 
class group have exponent 2 given in [2]. See his article [9, p. 1019]. For this reason we 
check the results obtained in [2, Theorem 21], and we realized that the cases h = 16, 
q = 2, g = 9 and h = 32, q = 3, g = 5 are missing. Then, we re-do the computer 
calculations systematically and found that indeed, we omitted some examples when we 
tried for the first time.

We give now, up to isomorphism (indeed up to Fq-isomorphism), the complete list of 
19 quadratic function fields whose ideal class group has exponent two and the infinite 
place of Fq(x) ramifies:

Class number 2.
q g Extension
2 1 y2 + xy + x(x2 + x + 1) = 0

2 y2 + xy + x(x4 + x + 1) = 0
2 y2 + (x2 + x + 1)y + (x2 + x + 1)(x3 + x + 1) = 0
3 y2 + (x2 + x + 1)y + (x2 + x + 1)(x5 + x2 + 1) = 0
3 y2 + (x3 + x2 + 1)y + (x3 + x2 + 1)(x4 + x3 + 1) = 0

3 1 y2 − (x + 2)(x2 + 1) = 0
4 1 y2 + xy + wx(x2 + wx + w) = 0, where w2 + w + 1 = 0
5 1 y2 − x(x2 + 2) = 0

Class number 4.
q g Extension
2 2 y2 + x(x + 1)y + x(x + 1)(x3 + x + 1) = 0

3 y2 + x(x + 1)y + x(x + 1)(x5 + x3 + x2 + x + 1) = 0
3 y2 + x(x2 + x + 1)y + x(x2 + x + 1)(x4 + x + 1) = 0

3 1 y2 − x3 + x = 0
2 y2 − 2x(x + 1)(x3 + x2 + x + 2) = 0
2 y2 − 2(x + 2)(x2 + 1)(x2 + x + 2) = 0

5 1 y2 − x3 − x = 0
7 1 y2 − x3 + 1 = 0
9 1 y2 − x3 +

√
−1 x = 0

Class number 8.
q g Extension
3 2 y2 − x(x + 1)(x + 2)(x2 + 1) = 0

Class number 16.
q g Extension
5 2 y2 + 4x5 + x = 0
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