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Elastic and electronic properties of strontium vanadate: An ab initio study.
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Abstract

We have investigated elastic and thermodynamic properties of strontium vanadate (SrVO3), by calculating their elastic constants
within the density functional theory scheme. We present calculations of the elastic constants performed accurate ab initio total
energy calculations using the full-potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient
approximation (GGA) for the exchange-correlation potential.

From the elastic strain tensor we estimate the bulk moduli, Young’s moduli, Poisson’s ratios and sound velocities of polycrys-
talline samples. In addition, using the Debye–Grüneisen theory we obtain estimates for the Debye temperatures, specific heats
and linear thermal expansion coefficients. Theoretical and experimental values are in reasonable agreement where experimental
data are available. Overall, our results show that density-functional calculations can indeed substitute for explicit measurements of
monocrystalline materials.
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1. Introduction

The perovskite-type oxides have the potential to be attractive
functional materials because they have various unique proper-
ties. They attracted attention in the last decade as prospective
components of solid oxide fuel cell (SOFC) [1, 2, 3, 4, 5, 6].
SrVO3 has a cubic perovskite structure and exhibits Pauli para-
magnetic metallic behavior [7, 8].

Elastic properties of a solid are important because they are
closely related to various fundamental solid state phenomena
and linked to whit thermodynamic properties such as specific
heat, thermal expansion, Debye temperature and Grüneisen pa-
rameter. Most importantly, knowledge of elastic constants is es-
sential for many practical applications related to the mechanical
properties of a solid, for instance, load deflection, thermoelastic
stress, internal stain, sound velocities, and fracture toughness.
The strontium vanadate has an ideal cubic perovskite struc-
ture [1, 7, 9], its simple structure allows it to be a starting point
to understand the properties of more complex systems [10, 11].
Khan et al [12] and Atahar P. et al [13] calculated the elastic
and thermodynamic properties using empirical models. Also,
Shein et al [14] employed the FLAPW-GGA method calculated
the elastic constants.

In the present work, we focus on the perovskite-type stron-
tium vanadate, SrVO3. The mechanical and thermodynamic
properties, such as bulk modulos, elastic moduli, anisotropy
elastic, Debye temperature, heat capacity, and thermal expan-
sion α of SrVO3 were calculated.
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2. Methods

2.1. FP-LAPW method

The first-principles calculations were performed based on the
density functional theory (DFT). The Kohn-Sham total ener-
gies were calculated self-consistently using the linearized aug-
mented plane wave method (FP-LAPW) with local orbital ex-
tensions [15], as implemented in the WIEN2k [16, 17] code,
where the core states are treated fully relativistically and the
semicore and valence states are computed in a scalar relativis-
tic approximation. The exchange-correlation terms were con-
sidered in the Perdew-Burke-Ernzerhof form of the general-
ized gradient approximation (GGA) [18]. We have chosen
the muffin-tin radii (RMT) of 2.44, 1.83 and 1.62 a.u. for the
Sr, V and O atoms respectively. The self-consistent calcula-
tions were done with an LAPW basis set defined by the cut-
off RMTKMAX=9.0. Inside the atomic spheres, the potential
and charge densities were expanded in crystal harmonics up
to L = 10. Convergence was assumed when the energy dif-
ference between the input and output charge densities was less
than 1×10−5 Ry. The calculations were carried out with a suffi-
ciently large number of k points in the first Brillouin zone (BZ).
Was used a 16×16×16 k-point mesh, yielding a different num-
ber of k points in the irreducible wedge of the BZ depending on
the structure: 165 for the cubic structure with space group Pm-
3m(221), 360 for tetragonal deformation 123(P4/mmm) and
584 for orthorhombic deformation 65(Cmmm).

2.2. Elastic properties

The calculate total energy as a function of volume was fit-
ted to the Birch–Murnaghan equation of state [19], from this
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process the equilibrium lattice constant (a) and bulk modulos
(B) were obtained. All crystals in cubic structure have only
three independent elastic constants, namely C11, C12, and C44.
One can apply a small strain and calculate the change of energy
or stress to obtain elastic constants Ci j. In the crystal struc-
tures analyzed in this work an external strain δ from −0.07 to
+ 0.07 was applied in the directions as explained by Güemez et
al. [20], associated with deformations: isotropic, tetragonal and
orthorhombic by
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to distort the lattice vectors, R′ = (1 + ǫ)R. The resulting
changes of energy are associated with elastic constants,

∆Eiso =
V0

2
(C11 + 2C12)δ2

∆Etet =
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3
(C11 −C12)δ2 and (2)

∆Eort = 2V0C44δ
2.

2.3. VRHG approximation for cubic structure

VRHG (Voigt, Reuss, Hill and Gilvarry) approximation is a
scheme for averaging the elastic constants and sound velocities,
Voigth [21] assuming homogeneous strain on the compound,
the bulk (B) and shear (G) moduli are written as

BV =
1
3

(C11 + 2C12) , GV =
1
5

(C11 −C12 + 3C44) . (3)

on the other hand, assuming homogeneous stress, Reuss [22]
proposes

1/BR = 3S 11 + 6S 12, 15/GR = 4S 11 − 4S 12 + 3S 44, (4)

where S i j are the elastic compliance constants. Later, Hill [23]
proved that the Voigt and Reuss equation represents upper and
lower limits of the true polycrystalline constants. A practical
estimate of the polycrystalline moduli is the arithmetic means
of the extremes,

BH = 1/2(Bv + BR), GH = 1/2(GV +GR). (5)

The shear and longitudinal sound velocities vs and vl are ob-
tained from equation [21]
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ρ
, vl =
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ρ
. (6)

The average sound velocity is obtained from[24]
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where vs and vl are the shear and longitudinal velocities respec-
tively.

Finally, the Young‘s modulus E and the Zener anisotropy
factor A, are calculated in terms of the computed data using
following relations

E =
9BG

3B +G
, (8)

A =
2C44

C11 −C12
. (9)

2.4. Thermodynamic properties

To calculate the linear thermal expansion coefficient

αL =
1
3
γG

CV

BV0
(10)

was needed an expression for the specific heat capacity (CV )
and the Grüneisen constant γG. Then two approximations of
Grüneisen constant were used, defined as[25],
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where γSL
G

and γDM
G

are Slater and Dugdale-MacDonald approx-
imations, respectively.

From Birch–Murnaghan equation of state [19] one gets

γSL
G = −

1
6
+

1
2

B′ and γDM
G =

1
6
+

1
2

B′

where B′ is dB/dP.
Using elastic constant data, was calculated the Debye tem-

perature (θD) by means of the equation[24]

θD =
h

kB

[

3q

4π
NAρ

M

]1/3

vm (13)

where h is the Planck’s constants, kB is the Boltzmann’s con-
stant, NA is the Avogadro’s number, q is the number of atoms
per formula unit, M is the molecular mass per formula unit, ρ
is the density and vm is the average sound velocity Eq. 7.

The specific heat at constant volume (CV ) can be calculated
by using the expression

CV = 9qNAkB

(

T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx (14)

where q, NA, kB, θD are the same as defined above and T is
temperature.
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3. Results and discussion

The equilibrium lattice constants (a) and elastic properties
calculated for perovskite SrVO3, as obtained within the frame-
work of the FLAPW-GGA calculations, are presented in Ta-
ble 1. The predicted a differs from experimental value by
∼ 0.6%, as is expected for first-principles methods employing
GGA.

Table 1: The lattice constant a(Å), elastic constants (C11, C12

and C44), bulk modulus (B) on GPa, Zener anisotropy factor A

and Poisson’n ratio σ for SrVO3.

Experiment This work Others
DFTd

a 3.8424a,3.84b 3.8654 3.84c 3.8662
3.8425 f , 3.841g

3.8498h,3.8451i

B 179 201e 181
C11 323 464c, 240e 270
C12 108 187c, 182e 137
C44 116 140e 114
A 1.06 4.5e 1.7
σ 0.239 0.350e 0.2157

aRef. [7] f Ref. [26]
bRef. [8] gRef. [9]
cRef. [12] hRef. [27]
eRef. [13] iRef. [1]
dRef. [14]

The values of elastic constants (Ci j) for cubic SrVO3 are pre-
sented in Table1. These three independent constants in a cubic
symmetry are estimated by calculating the change of total en-
ergy on single crystals applying strains to an equilibrium struc-
ture (Eqs.1 and 2).

For the elastic constants, at present there are no experi-
mental data to compare with our results but they seem to
be in discrepancy with other available theoretical data using
empirical[12, 13] methods. On ab-initio methods the discrep-
ancy is observed for C11 and C12 (±20%) where the obtained
values disagree with those of Ref [14]; this unexpected agree-
ment comes probably from the stress tensors used (Eq 1). The
Zener anisotropy factor A is a measure of the degree of elastic
anisotropy in solids. A will take the value of 1 for a completely
isotropic material. A value of A smaller or greater than unity
shows the degree of elastic anisotropy, our results indicate that
SrVO3 is isotropic material, however, using data from Parveen
et. al. [13] and Shein et al [14] SrVO3 is an elastically highly
anisotropic compound.

The volume thermal expansion is computed using the Eq. 10
and, as Fig.1 shows, it displays a non-linear behavior, similar to
the one observed for transition metal-based perovskites, such as
e.g. cobaltites and ferrites [28, 29]. The average thermal expan-
sion coefficient (TEC) of SrVO3 at 300–1223K was calculated
to be equal to 1.33×10−6K−1 and 1.54×10−6K−1 using γ SL

G
and

γDM
G

, respectively. The obtained TEC values are in good agree-
ment with the experimental data reported previously (Table 2).

Figure 1: Temperature dependence of thermal expansion coef-
ficient of SrVO3 in wide temperature range (0-1273 K).

Table 2: Average linear thermal expansion coefficient.

αL × 105(K−1) T (K) Ref.
1.80 300-1023 [27]
1.62 300-1273 [1]
1.45 300-1073 [9]

This work 300-1273
1.33 γS L

G

1.54 γDM
G

Table 3: VRHG approximation and experimental elastic and
thermodynamic properties for SrVO3.

This work Exp.[9] Teo.[13]
vl(m/s) 7843 7169 3217
vs(m/s) 4587 4162 650
G(GPa) 113 90 67
E(GPa) 280 224 181
B/G 1.58
θD(K) 670 612 538

The table 3 presents the results of our VRHG approximation
calculations. The ratio of the bulk modulus to shear modulus
of crystalline phases can predict the brittle and ductile behav-
ior of materials. A high B/G ratio is associated with ductility,
whereas a low value corresponds to brittle nature. The criti-
cal value which separates ductile and brittle materials is around
1.75. When B/G ratio is higher than 1.75, the material behaves
in a ductile manner; otherwise, the material behaves in a brit-
tle manner. In the present work, the value is lower than 1.75.
Which means that SrVO2 is brittle.

The Debye temperature of materials plays an important role
in physical quantity. It is basically a measure of the vibrational
response of the material. The values of Debye temperature have
been obtained from the knowledge of the elastic constants and
the sound velocities (including longitudinal, shear and average
wave velocities). The values thus obtained are listed in Table 3
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Figure 2: Calculated heat capacity of SrVO3 and its comparison
with the experimental work of Maekawa et al.[9]

along with other theoretical [13] and experimental results [9]
for the comparison. The predicted velocities and Debye tem-
perature 3 differs from experimental value by ∼ 10%, while for
Young’ s and shear moduli differs by ∼ 25%.

The specific heat in the normal state of the material is usually
approximated by the contribution of the lattice specific heat.
Fig. 2 shows (solid line) the computed results on heat capacity
for SrVO3 and the dashed line represents the fitting result of the
experimental data[9]. Our results on specific heat have quite
good match with the experimental work of Maekawa et al. [9].

In order to better visualize the isotropy of these compounds,
is shown a three-dimensional (3D) representation of Young’s
modulus. For cubic crystals, the directional dependence of
Young’s modulus in 3D representation can be given by

1
E
= S 11 − 2(S 11 − S 12 −

1
4

S 44)(l21l22 + l22l23 + l23l21) (15)

where S i j represents the elastic compliance constants, and l1, l2
and l3 stand for the directional cosines to the x−, y− and z−axes,
respectively. The Three-dimensional representation of Young’s
modulus, shown in Figure 3, depicts the elastic isotropy. It can
be seen that the elastic isotropy.

To analyze the isotropy on elastic wave velocities, he equa-
tion below was used [30]

det |Ci jkln jnl − ρv
2δik | = 0, (16)

where Ci jkl is the single crystal elastic constant tensor, ~n is the
propagation direction, ρ is the density, and δi j is the Kronecker
delta function. The eigenvalues of the 3 × 3 matrix yield the
three unique elastic wave velocities (one longitudinal vl and two
shear vs waves) for a given propagation direction and the eigen-
vectors correspond the polarization directions. Figure 4 shows
the angular variations of the velocities in the zy plane and thus,
the high isotropy.

4. Conclusions

In summary, were performed FLAPW-GGA calculations for
SrVO3–perovskite phase to calculate the elastic constants. Us-
ing these results, for the first time, the numerical estimates of

Figure 3: 3D directional dependence of the Young’s modulos.

Figure 4: Angular variation of vl and vs velocities in the zy

plane.

elastic parameters and thermodynamic properties of the poly-
crystalline SrVO3 ceramics were performed. This work would
provide a complete basis for the theoretical description of the
elastic and thermal properties of vanadate compounds. Also,
it was interesting to compare the results presented here with
available experimental data and the match was satisfactory.
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